These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37930891)

  • 1. Quantum Computing and Visualization: A Disruptive Technological Change Ahead.
    Bethel EW; Amankwah MG; Balewski J; Van Beeumen R; Camps D; Huang D; Perciano T; Rhyne TM
    IEEE Comput Graph Appl; 2023; 43(6):101-111. PubMed ID: 37930891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The future of computing beyond Moore's Law.
    Shalf J
    Philos Trans A Math Phys Eng Sci; 2020 Mar; 378(2166):20190061. PubMed ID: 31955683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics.
    Pal S; Bhattacharya M; Lee SS; Chakraborty C
    Mol Biotechnol; 2024 Feb; 66(2):163-178. PubMed ID: 37244882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Materials challenges and opportunities for quantum computing hardware.
    de Leon NP; Itoh KM; Kim D; Mehta KK; Northup TE; Paik H; Palmer BS; Samarth N; Sangtawesin S; Steuerman DW
    Science; 2021 Apr; 372(6539):. PubMed ID: 33859004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. There's plenty of room at the Top: What will drive computer performance after Moore's law?
    Leiserson CE; Thompson NC; Emer JS; Kuszmaul BC; Lampson BW; Sanchez D; Schardl TB
    Science; 2020 Jun; 368(6495):. PubMed ID: 32499413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors.
    Cova T; Vitorino C; Ferreira M; Nunes S; Rondon-Villarreal P; Pais A
    Methods Mol Biol; 2022; 2390():321-347. PubMed ID: 34731476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge Caching in Fog-Based Sensor Networks through Deep Learning-Associated Quantum Computing Framework.
    Hasan T; Ahmad F; Rizwan M; Alshammari N; Alanazi SA; Hussain I; Naseem S
    Comput Intell Neurosci; 2022; 2022():6138434. PubMed ID: 35035461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum computing's potential for drug discovery: Early stage industry dynamics.
    Zinner M; Dahlhausen F; Boehme P; Ehlers J; Bieske L; Fehring L
    Drug Discov Today; 2021 Jul; 26(7):1680-1688. PubMed ID: 34119668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards practical and massively parallel quantum computing emulation for quantum chemistry.
    Shang H; Fan Y; Shen L; Guo C; Liu J; Duan X; Li F; Li Z
    npj Quantum Inf; 2023; 9(1):33. PubMed ID: 37042014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental comparison of two quantum computing architectures.
    Linke NM; Maslov D; Roetteler M; Debnath S; Figgatt C; Landsman KA; Wright K; Monroe C
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3305-3310. PubMed ID: 28325879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum computing algorithms: getting closer to critical problems in computational biology.
    Marchetti L; Nifosì R; Martelli PL; Da Pozzo E; Cappello V; Banterle F; Trincavelli ML; Martini C; D'Elia M
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36220772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the institutionalization of quantum computing in pharmaceutical research.
    Zinner M; Dahlhausen F; Boehme P; Ehlers J; Bieske L; Fehring L
    Drug Discov Today; 2022 Feb; 27(2):378-383. PubMed ID: 34688911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights from incorporating quantum computing into drug design workflows.
    Lau B; Emani PS; Chapman J; Yao L; Lam T; Merrill P; Warrell J; Gerstein MB; Lam HYK
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36477833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum tomography of an entangled three-qubit state in silicon.
    Takeda K; Noiri A; Nakajima T; Yoneda J; Kobayashi T; Tarucha S
    Nat Nanotechnol; 2021 Sep; 16(9):965-969. PubMed ID: 34099899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-platform comparison of arbitrary quantum states.
    Zhu D; Cian ZP; Noel C; Risinger A; Biswas D; Egan L; Zhu Y; Green AM; Alderete CH; Nguyen NH; Wang Q; Maksymov A; Nam Y; Cetina M; Linke NM; Hafezi M; Monroe C
    Nat Commun; 2022 Nov; 13(1):6620. PubMed ID: 36333309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras.
    Coveney PV; Highfield RR
    J Comput Sci; 2020 Oct; 46():101093. PubMed ID: 33312270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable quantum computing with Josephson charge qubits.
    You JQ; Tsai JS; Nori F
    Phys Rev Lett; 2002 Nov; 89(19):197902. PubMed ID: 12443150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of two-qubit algorithms with a superconducting quantum processor.
    DiCarlo L; Chow JM; Gambetta JM; Bishop LS; Johnson BR; Schuster DI; Majer J; Blais A; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2009 Jul; 460(7252):240-4. PubMed ID: 19561592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon CMOS architecture for a spin-based quantum computer.
    Veldhorst M; Eenink HGJ; Yang CH; Dzurak AS
    Nat Commun; 2017 Dec; 8(1):1766. PubMed ID: 29242497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A programmable two-qubit quantum processor in silicon.
    Watson TF; Philips SGJ; Kawakami E; Ward DR; Scarlino P; Veldhorst M; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LMK
    Nature; 2018 Mar; 555(7698):633-637. PubMed ID: 29443962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.