BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37931001)

  • 1. Genome instability footprint under rapamycin and hydroxyurea treatments.
    Li J; Stenberg S; Yue JX; Mikhalev E; Thompson D; Warringer J; Liti G
    PLoS Genet; 2023 Nov; 19(11):e1011012. PubMed ID: 37931001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Mutation Rates and Spectra of Respiratory-Deficient Yeast.
    Tu X; Wang F; Liti G; Breitenbach M; Yue JX; Li J
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth conditions that increase or decrease lifespan in Saccharomyces cerevisiae lead to corresponding decreases or increases in rates of interstitial deletions and non-reciprocal translocations.
    Maxwell PH
    BMC Genet; 2016 Oct; 17(1):140. PubMed ID: 27769161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of yeast chromosome XII instability: single chromosome comet assay.
    Lewinska A; Miedziak B; Wnuk M
    Fungal Genet Biol; 2014 Feb; 63():9-16. PubMed ID: 24333410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.
    Lewinska A; Miedziak B; Kulak K; Molon M; Wnuk M
    Biogerontology; 2014 Jun; 15(3):289-316. PubMed ID: 24711086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in
    Segura-Wang M; Onishi-Seebacher M; Stütz AM; Mardin BR; Korbel JO
    G3 (Bethesda); 2017 Oct; 7(10):3269-3279. PubMed ID: 28818866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Spontaneous Mutations to Quantitative and Molecular Variation at the Highly Repetitive rDNA Locus in Yeast.
    Sharp NP; Smith DR; Driscoll G; Sun K; Vickerman CM; Martin SCT
    Genome Biol Evol; 2023 Oct; 15(10):. PubMed ID: 37847861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae.
    Zheng DQ; Zhang K; Wu XC; Mieczkowski PA; Petes TD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8114-E8121. PubMed ID: 27911848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales.
    Li J; Vázquez-García I; Persson K; González A; Yue JX; Barré B; Hall MN; Long A; Warringer J; Mustonen V; Liti G
    Mol Biol Evol; 2019 Apr; 36(4):691-708. PubMed ID: 30657986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.
    Stirling PC; Shen Y; Corbett R; Jones SJ; Hieter P
    Genetics; 2014 Feb; 196(2):403-12. PubMed ID: 24336748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replicon size of yeast ribosomal DNA.
    Walmsley RM; Johnston LH; Williamson DH; Oliver SG
    Mol Gen Genet; 1984; 195(1-2):260-6. PubMed ID: 6387390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.
    Feng W; Bachant J; Collingwood D; Raghuraman MK; Brewer BJ
    Genetics; 2009 Dec; 183(4):1249-60. PubMed ID: 19805819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic characterization of the conformation and dynamics of budding yeast chromosome XII.
    Albert B; Mathon J; Shukla A; Saad H; Normand C; Léger-Silvestre I; Villa D; Kamgoue A; Mozziconacci J; Wong H; Zimmer C; Bhargava P; Bancaud A; Gadal O
    J Cell Biol; 2013 Jul; 202(2):201-10. PubMed ID: 23878273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised.
    Charton R; Muguet A; Griesenbeck J; Smerdon MJ; Conconi A
    Mutat Res; 2019 May; 815():20-29. PubMed ID: 31063901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical suppression of defects in mitotic spindle assembly, redox control, and sterol biosynthesis by hydroxyurea.
    McCulley A; Haarer B; Viggiano S; Karchin J; Feng W
    G3 (Bethesda); 2014 Jan; 4(1):39-48. PubMed ID: 24192836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of heterozygosity by SCRaMbLEing.
    Li Y; Wu Y; Ma L; Guo Z; Xiao W; Yuan Y
    Sci China Life Sci; 2019 Mar; 62(3):381-393. PubMed ID: 30900161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for perinuclear chromosome tethering in maintenance of genome stability.
    Mekhail K; Seebacher J; Gygi SP; Moazed D
    Nature; 2008 Dec; 456(7222):667-70. PubMed ID: 18997772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae.
    Choi JE; Heo SH; Kim MJ; Chung WH
    Free Radic Biol Med; 2018 Dec; 129():97-106. PubMed ID: 30223018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance.
    Saka K; Takahashi A; Sasaki M; Kobayashi T
    Nucleic Acids Res; 2016 May; 44(9):4211-21. PubMed ID: 26912831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast.
    Li P; Jin H; Yu HG
    Mol Biol Cell; 2014 Oct; 25(19):2934-47. PubMed ID: 25103240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.