BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37931097)

  • 1. Soft robotics informs how an early echinoderm moved.
    Desatnik R; Patterson ZJ; Gorzelak P; Zamora S; LeDuc P; Majidi C
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2306580120. PubMed ID: 37931097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamentals of soft robot locomotion.
    Calisti M; Picardi G; Laschi C
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EuMoBot: replicating euglenoid movement in a soft robot.
    Digumarti KM; Conn AT; Rossiter J
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30464056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk.
    Li Y; Ren T; Li Y; Liu Q; Chen Y
    Soft Robot; 2021 Feb; 8(1):97-108. PubMed ID: 32522089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating alternative gait strategies using evolutionary robotics.
    Sellers WI; Dennis LA; W -J W; Crompton RH
    J Anat; 2004 May; 204(5):343-51. PubMed ID: 15198699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A minimally designed soft crawling robot for robust locomotion in unstructured pipes.
    Yu W; Li X; Chen D; Liu J; Su J; Liu J; Cao C; Yuan H
    Bioinspir Biomim; 2022 Jul; 17(5):. PubMed ID: 35636388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators.
    Lu X; Wang K; Hu T
    Bioinspir Biomim; 2020 Jun; 15(4):046012. PubMed ID: 32311691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding form and function of the stem in early flattened echinoderms (pleurocystitids) using a microstructural approach.
    Gorzelak P; Zamora S
    PeerJ; 2016; 4():e1820. PubMed ID: 27168956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A minimal robophysical model of quadriflagellate self-propulsion.
    Diaz K; Robinson TL; Aydin YO; Aydin E; Goldman DI; Wan KY
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34359055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically Activated Soft Robots: Speed Up by Rolling.
    Li WB; Zhang WM; Gao QH; Guo Q; Wu S; Zou HX; Peng ZK; Meng G
    Soft Robot; 2021 Oct; 8(5):611-624. PubMed ID: 33180656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.
    Rahman IA; Waters JA; Sumrall CD; Astolfo A
    Biol Lett; 2015 Oct; 11(10):. PubMed ID: 26510677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots.
    Kandhari A; Wang Y; Chiel HJ; Quinn RD; Daltorio KA
    Soft Robot; 2021 Aug; 8(4):485-505. PubMed ID: 32846113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.