BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37931111)

  • 1. Genome-wide detection of human intronic AG-gain variants located between splicing branchpoints and canonical splice acceptor sites.
    Zhang P; Chaldebas M; Ogishi M; Al Qureshah F; Ponsin K; Feng Y; Rinchai D; Milisavljevic B; Han JE; Moncada-Vélez M; Keles S; Schröder B; Stenson PD; Cooper DN; Cobat A; Boisson B; Zhang Q; Boisson-Dupuis S; Abel L; Casanova JL
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2314225120. PubMed ID: 37931111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide detection of human variants that disrupt intronic branchpoints.
    Zhang P; Philippot Q; Ren W; Lei WT; Li J; Stenson PD; Palacín PS; Colobran R; Boisson B; Zhang SY; Puel A; Pan-Hammarström Q; Zhang Q; Cooper DN; Abel L; Casanova JL
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2211194119. PubMed ID: 36306325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence, parameters, and pathogenic mechanisms for splice-altering acceptor variants that disrupt the AG exclusion zone.
    Bryen SJ; Yuen M; Joshi H; Dawes R; Zhang K; Lu JK; Jones KJ; Liang C; Wong WK; Peduto AJ; Waddell LB; Evesson FJ; Cooper ST
    HGG Adv; 2022 Oct; 3(4):100125. PubMed ID: 35847480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All reported non-canonical splice site variants in GLA cause aberrant splicing.
    Okada E; Horinouchi T; Yamamura T; Aoto Y; Suzuki R; Ichikawa Y; Tanaka Y; Masuda C; Kitakado H; Kondo A; Sakakibara N; Ishiko S; Nagano C; Ishimori S; Usui J; Yamagata K; Matsuo M; Nozu K
    Clin Exp Nephrol; 2023 Sep; 27(9):737-746. PubMed ID: 37254000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introme accurately predicts the impact of coding and noncoding variants on gene splicing, with clinical applications.
    Sullivan PJ; Gayevskiy V; Davis RL; Wong M; Mayoh C; Mallawaarachchi A; Hort Y; McCabe MJ; Beecroft S; Jackson MR; Arts P; Dubowsky A; Laing N; Dinger ME; Scott HS; Oates E; Pinese M; Cowley MJ
    Genome Biol; 2023 May; 24(1):118. PubMed ID: 37198692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive characterisation of intronic mis-splicing mutations in human cancers.
    Jung H; Lee KS; Choi JK
    Oncogene; 2021 Feb; 40(7):1347-1361. PubMed ID: 33420369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AG-exclusion zone revisited: Lessons to learn from 91 intronic NF1 3' splice site mutations outside the canonical AG-dinucleotides.
    Wimmer K; Schamschula E; Wernstedt A; Traunfellner P; Amberger A; Zschocke J; Kroisel P; Chen Y; Callens T; Messiaen L
    Hum Mutat; 2020 Jun; 41(6):1145-1156. PubMed ID: 32126153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining genetic constraint with predictions of alternative splicing to prioritize deleterious splicing in rare disease studies.
    Cormier MJ; Pedersen BS; Bayrak-Toydemir P; Quinlan AR
    BMC Bioinformatics; 2022 Nov; 23(1):482. PubMed ID: 36376793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable prioritization of splice variants in diagnostic next-generation sequencing.
    Danis D; Jacobsen JOB; Carmody LC; Gargano MA; McMurry JA; Hegde A; Haendel MA; Valentini G; Smedley D; Robinson PN
    Am J Hum Genet; 2021 Sep; 108(9):1564-1577. PubMed ID: 34289339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rules and tools to predict the splicing effects of exonic and intronic mutations.
    Ohno K; Takeda JI; Masuda A
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 28949076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two intronic mutations cause 17-hydroxylase deficiency by disrupting splice acceptor sites: direct demonstration of aberrant splicing and absent enzyme activity by expression of the entire CYP17 gene in HEK-293 cells.
    Costa-Santos M; Kater CE; Dias EP; Auchus RJ
    J Clin Endocrinol Metab; 2004 Jan; 89(1):43-8. PubMed ID: 14715826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing mutations in inherited retinal diseases.
    Weisschuh N; Buena-Atienza E; Wissinger B
    Prog Retin Eye Res; 2021 Jan; 80():100874. PubMed ID: 32553897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing analysis of unclassified variants in COL2A1 and COL11A1 identifies deep intronic pathogenic mutations.
    Richards AJ; McNinch A; Whittaker J; Treacy B; Oakhill K; Poulson A; Snead MP
    Eur J Hum Genet; 2012 May; 20(5):552-8. PubMed ID: 22189268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sequence-based, deep learning model accurately predicts RNA splicing branchpoints.
    Paggi JM; Bejerano G
    RNA; 2018 Dec; 24(12):1647-1658. PubMed ID: 30224349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes.
    Dragoš VŠ; Strojnik K; Klančar G; Škerl P; Stegel V; Blatnik A; Banjac M; Krajc M; Novaković S
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Characteristics of
    Weisschuh N; Mazzola P; Bertrand M; Haack TB; Wissinger B; Kohl S; Stingl K
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites.
    Lee M; Roos P; Sharma N; Atalar M; Evans TA; Pellicore MJ; Davis E; Lam AN; Stanley SE; Khalil SE; Solomon GM; Walker D; Raraigh KS; Vecchio-Pagan B; Armanios M; Cutting GR
    Am J Hum Genet; 2017 May; 100(5):751-765. PubMed ID: 28475858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing.
    Chiang HL; Chen YT; Su JY; Lin HN; Yu CA; Hung YJ; Wang YL; Huang YT; Lin CL
    Nat Struct Mol Biol; 2022 Nov; 29(11):1043-1055. PubMed ID: 36303034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome.
    Hiraide T; Shimizu K; Okumura Y; Miyamoto S; Nakashima M; Ogata T; Saitsu H
    J Hum Genet; 2023 Jul; 68(7):499-505. PubMed ID: 36894704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.