These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 3793115)

  • 1. Inheritance of human muscle enzyme adaptation to isokinetic strength training.
    Thibault MC; Simoneau JA; Côté C; Boulay MR; Lagassé P; Marcotte M; Bouchard C
    Hum Hered; 1986; 36(6):341-7. PubMed ID: 3793115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training.
    Simoneau JA; Lortie G; Boulay MR; Marcotte M; Thibault MC; Bouchard C
    Int J Sports Med; 1986 Jun; 7(3):167-71. PubMed ID: 3733313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic effects in human skeletal muscle fiber type distribution and enzyme activities.
    Bouchard C; Simoneau JA; Lortie G; Boulay MR; Marcotte M; Thibault MC
    Can J Physiol Pharmacol; 1986 Sep; 64(9):1245-51. PubMed ID: 2946386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heredity and muscle adaptation to endurance training.
    Hamel P; Simoneau JA; Lortie G; Boulay MR; Bouchard C
    Med Sci Sports Exerc; 1986 Dec; 18(6):690-6. PubMed ID: 3784881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle characteristics in sedentary black and Caucasian males.
    Ama PF; Simoneau JA; Boulay MR; Serresse O; Thériault G; Bouchard C
    J Appl Physiol (1985); 1986 Nov; 61(5):1758-61. PubMed ID: 2946652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isokinetic strength training protocols: do they induce skeletal muscle fiber hypertrophy?
    Côté C; Simoneau JA; Lagassé P; Boulay M; Thibault MC; Marcotte M; Bouchard C
    Arch Phys Med Rehabil; 1988 Apr; 69(4):281-5. PubMed ID: 3355358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human variation in skeletal muscle fiber-type proportion and enzyme activities.
    Simoneau JA; Bouchard C
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E567-72. PubMed ID: 2529775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance.
    Simoneau JA; Lortie G; Boulay MR; Marcotte M; Thibault MC; Bouchard C
    Eur J Appl Physiol Occup Physiol; 1987; 56(5):516-21. PubMed ID: 3653091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torque development in isokinetic training.
    Esselman PC; de Lateur BJ; Alquist AD; Questad KA; Giaconi RM
    Arch Phys Med Rehabil; 1991 Sep; 72(10):723-8. PubMed ID: 1834037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme activities in muscle and connective tissue of M. Vastus lateralis in habitually training and sedentary 33 to 70-year-old men.
    Suominen H; Heikkinen E
    Eur J Appl Physiol Occup Physiol; 1975 Dec; 34(4):249-54. PubMed ID: 172330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle enzyme activity in humans: role of substrate availability and training.
    Helge JW; Kiens B
    Am J Physiol; 1997 May; 272(5 Pt 2):R1620-4. PubMed ID: 9176356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial effects of high-resistance and prolonged endurance training on Na+-K+ pump concentration and enzymatic activities in human vastus lateralis.
    Green H; Dahly A; Shoemaker K; Goreham C; Bombardier E; Ball-Burnett M
    Acta Physiol Scand; 1999 Feb; 165(2):177-84. PubMed ID: 10090329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle morphological and biochemical adaptations to training in obese Zucker rats.
    Torgan CE; Brozinick JT; Kastello GM; Ivy JL
    J Appl Physiol (1985); 1989 Nov; 67(5):1807-13. PubMed ID: 2557320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle performance and enzymatic adaptations to sprint interval training.
    MacDougall JD; Hicks AL; MacDonald JR; McKelvie RS; Green HJ; Smith KM
    J Appl Physiol (1985); 1998 Jun; 84(6):2138-42. PubMed ID: 9609810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of training and detraining on several enzymes in horse skeletal muscle.
    Snow DH; Guy PS
    Arch Int Physiol Biochim; 1979 Feb; 87(1):87-93. PubMed ID: 92293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptations in skeletal muscle following strength training.
    Costill DL; Coyle EF; Fink WF; Lesmes GR; Witzmann FA
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Jan; 46(1):96-9. PubMed ID: 37209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human skeletal muscle adaptation in response to chronic low-frequency electrical stimulation.
    Thériault R; Thériault G; Simoneau JA
    J Appl Physiol (1985); 1994 Oct; 77(4):1885-9. PubMed ID: 7836213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease.
    Maltais F; LeBlanc P; Simard C; Jobin J; Bérubé C; Bruneau J; Carrier L; Belleau R
    Am J Respir Crit Care Med; 1996 Aug; 154(2 Pt 1):442-7. PubMed ID: 8756820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
    Borges O; Essén-Gustavsson B
    Acta Physiol Scand; 1989 May; 136(1):29-36. PubMed ID: 2773660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of creatine supplementation and three days of resistance training on muscle strength, power output, and neuromuscular function.
    Cramer JT; Stout JR; Culbertson JY; Egan AD
    J Strength Cond Res; 2007 Aug; 21(3):668-77. PubMed ID: 17685691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.