These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37931252)

  • 1. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres.
    Yun S; Yoon S
    J Phys Chem Lett; 2023 Nov; 14(45):10225-10232. PubMed ID: 37931252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple hybridized resonances of IR-806 chromonic molecules strongly coupled to Au nanorods.
    Zhang YF; Yang DJ; Wang JH; Wang YL; Ding SJ; Zhou L; Hao ZH; Wang QQ
    Nanoscale; 2015 May; 7(18):8503-9. PubMed ID: 25896476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency.
    Kim S; Lee S; Yoon S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4163-4169. PubMed ID: 35006675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Colloidal Gold Nanoparticles with Urine and Saliva Biofluids: An Exploratory Study.
    António M; Lima T; Vitorino R; Daniel-da-Silva AL
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines.
    Orouji A; Ghasemi F; Bigdeli A; Hormozi-Nezhad MR
    ACS Appl Mater Interfaces; 2021 May; 13(17):20865-20874. PubMed ID: 33887901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of oriented assembly of gold nanospheres with nanorods by biotin-streptavidin connectors.
    Zhou X; Wang Y; Zhong L; Bao S; Han Y; Ren L; Zhang Q
    Nanoscale; 2012 Oct; 4(20):6256-9. PubMed ID: 22955723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Transformation of Nanorods to Nanowires: Reversible Growth and Dissolution of Anisotropic Gold Nanostructures.
    Khanal BP; Zubarev ER
    ACS Nano; 2019 Feb; 13(2):2370-2378. PubMed ID: 30753055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Resonant Scattering Behavior in the Surface Plasmon Resonance Imaging Microscopy of Single Gold Nanorods.
    Fan Y; Aceta Y; Hessong E; Bengston A; Biageyian LA; Huynh QP; Corn RM
    J Phys Chem Lett; 2021 Feb; 12(7):2004-2010. PubMed ID: 33596650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods.
    Jiang G; Hore MJ; Gam S; Composto RJ
    ACS Nano; 2012 Feb; 6(2):1578-88. PubMed ID: 22283716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods.
    Omura N; Uechi I; Yamada S
    Anal Sci; 2009 Feb; 25(2):255-9. PubMed ID: 19212062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Au Nanoparticle Two-Dimensional Assemblies Dispersed with Au Nanoparticle-Nanostar Complexes and Surface-Enhanced Raman Scattering Activity.
    Sugawa K; Ono K; Tomii R; Hori Y; Aoki Y; Honma K; Tamada K; Otsuki J
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics.
    Ungureanu C; Kroes R; Petersen W; Groothuis TA; Ungureanu F; Janssen H; van Leeuwen FW; Kooyman RP; Manohar S; van Leeuwen TG
    Nano Lett; 2011 May; 11(5):1887-94. PubMed ID: 21491868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.