These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37931430)

  • 1. Driver-initiated take-overs during critical evasion maneuvers in automated driving.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2024 Jan; 194():107362. PubMed ID: 37931430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver-initiated take-overs during critical braking maneuvers in automated driving - The role of time headway, traction usage, and trust in automation.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2022 Sep; 174():106725. PubMed ID: 35878555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What happens when drivers of automated vehicles take over control in critical brake situations?
    Roche F; Thüring M; Trukenbrod AK
    Accid Anal Prev; 2020 Sep; 144():105588. PubMed ID: 32531374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drivers' Performance in Non-critical Take-Overs From an Automated Driving System-An On-Road Study.
    Rydström A; Mullaart MS; Novakazi F; Johansson M; Eriksson A
    Hum Factors; 2023 Dec; 65(8):1841-1857. PubMed ID: 35212565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of cooperative human-machine interface for changing lanes in conditional driving automation.
    Muslim H; Kiu Leung C; Itoh M
    Accid Anal Prev; 2022 Sep; 174():106719. PubMed ID: 35660872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keeping the driver in the loop through semi-automated or manual lane changes in conditionally automated driving.
    Dillmann J; den Hartigh RJR; Kurpiers CM; Pelzer J; Raisch FK; Cox RFA; de Waard D
    Accid Anal Prev; 2021 Nov; 162():106397. PubMed ID: 34563644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drivers' gaze patterns when resuming control with a head-up-display: Effects of automation level and time budget.
    Xu C; Louw TL; Merat N; Li P; Hu M; Li Y
    Accid Anal Prev; 2023 Feb; 180():106905. PubMed ID: 36508949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The More You Know: Trust Dynamics and Calibration in Highly Automated Driving and the Effects of Take-Overs, System Malfunction, and System Transparency.
    Kraus J; Scholz D; Stiegemeier D; Baumann M
    Hum Factors; 2020 Aug; 62(5):718-736. PubMed ID: 31233695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated conditionally automated driving on the road: How do drivers leave the loop over time?
    Dillmann J; Den Hartigh RJR; Kurpiers CM; Raisch FK; Kadrileev N; Cox RFA; De Waard D
    Accid Anal Prev; 2023 Mar; 181():106927. PubMed ID: 36584619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.
    Madigan R; Louw T; Merat N
    PLoS One; 2018; 13(2):e0192190. PubMed ID: 29466402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling take-over performance in level 3 conditionally automated vehicles.
    Gold C; Happee R; Bengler K
    Accid Anal Prev; 2018 Jul; 116():3-13. PubMed ID: 29196019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Get Ready for Take-Overs: Using Head-Up Display for Drivers to Engage in Non-Driving-Related Tasks in Automated Vehicles.
    Li X; Schroeter R; Rakotonirainy A; Kuo J; Lenné MG
    Hum Factors; 2023 Dec; 65(8):1759-1775. PubMed ID: 34865560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driver Visual Attention Before and After Take-Over Requests During Automated Driving on Public Roads.
    Pipkorn L; Dozza M; Tivesten E
    Hum Factors; 2024 Feb; 66(2):336-347. PubMed ID: 35708240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Imminent Take-Over Requests With Real Automation on a Test Track.
    Wintersberger P; Schartmüller C; Sadeghian S; Frison AK; Riener A
    Hum Factors; 2023 Dec; 65(8):1776-1792. PubMed ID: 34911393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a 3M (mistakes, mentoring, and mastery) training program for transfer of control situations in a level 2 automated driving system.
    Roberts SC; Hanson W; Ebadi Y; Talreja N; Knodler MA; Fisher DL
    Appl Ergon; 2024 Apr; 116():104215. PubMed ID: 38176134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Evaluation of Drivers' Behavioral Adaptation to an Adaptive Collision Avoidance System.
    Muslim H; Itoh M
    Hum Factors; 2021 Nov; 63(7):1295-1315. PubMed ID: 32484749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driver behavior and the use of automation in real-world driving.
    Gershon P; Seaman S; Mehler B; Reimer B; Coughlin J
    Accid Anal Prev; 2021 Aug; 158():106217. PubMed ID: 34087506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.
    Merat N; Lee JD
    Hum Factors; 2012 Oct; 54(5):681-6. PubMed ID: 23156614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.