These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37931451)

  • 1. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review.
    Lee MH; Kim HD; Jang YJ
    Food Chem; 2024 Mar; 437(Pt 2):137910. PubMed ID: 37931451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates.
    Gu L; Su Y; Zhang M; Chang C; Li J; McClements DJ; Yang Y
    Food Res Int; 2017 Jun; 96():84-93. PubMed ID: 28528111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design principles of oil-in-water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures.
    Li M; McClements DJ; Liu X; Liu F
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):3159-3190. PubMed ID: 33337043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility.
    McClements DJ
    Food Funct; 2018 Jan; 9(1):22-41. PubMed ID: 29119979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the thermal stability of natural bioactive ingredients via encapsulation technology.
    Bodbodak S; Nejatian M; Ghandehari Yazdi AP; Kamali Rousta L; Rafiee Z; Jalali-Jivan M; Kharazmi MS; Jafari SM
    Crit Rev Food Sci Nutr; 2024; 64(10):2824-2846. PubMed ID: 36178297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of Vitamin D
    Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T
    J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro- and nano bio-based delivery systems for food applications: In vitro behavior.
    de Souza Simões L; Madalena DA; Pinheiro AC; Teixeira JA; Vicente AA; Ramos ÓL
    Adv Colloid Interface Sci; 2017 May; 243():23-45. PubMed ID: 28395856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emulsion-based delivery systems for lipophilic bioactive components.
    McClements DJ; Decker EA; Weiss J
    J Food Sci; 2007 Oct; 72(8):R109-24. PubMed ID: 17995616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability.
    Choi SJ; McClements DJ
    Food Sci Biotechnol; 2020 Feb; 29(2):149-168. PubMed ID: 32064124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Encapsulation in Water-in-Oil Emulsions: Effect of Ferrous Sulfate Concentration and Fat Crystal Formation on Oxidative Stability.
    Prichapan N; McClements DJ; Klinkesorn U
    J Food Sci; 2018 Feb; 83(2):309-317. PubMed ID: 29327790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.
    McClements DJ; Li Y
    Adv Colloid Interface Sci; 2010 Sep; 159(2):213-28. PubMed ID: 20638649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-encapsulation systems for delivery of bioactive ingredients.
    Liu K; Chen YY; Pan LH; Li QM; Luo JP; Zha XQ
    Food Res Int; 2022 May; 155():111073. PubMed ID: 35400451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonochemistry: An emerging approach to fabricate biopolymer cross-linked emulsions for the delivery of bioactive compounds.
    Tan C; Zhu Y; Ahari H; Jafari SM; Sun B; Wang J
    Adv Colloid Interface Sci; 2023 Jan; 311():102825. PubMed ID: 36525841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems.
    Boonlao N; Ruktanonchai UR; Anal AK
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112211. PubMed ID: 34800865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Stability of Lycopene from Chemical Degradation in Model Beverage Emulsions: Impact of Hydrophilic Group Size of Emulsifier and Antioxidant Polarity.
    Kim J; Choi SJ
    Foods; 2020 Jul; 9(8):. PubMed ID: 32707864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulsion design for the delivery of β-carotene in complex food systems.
    Mao L; Wang D; Liu F; Gao Y
    Crit Rev Food Sci Nutr; 2018 Mar; 58(5):770-784. PubMed ID: 27645127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions.
    McClements DJ; Saliva-Trujillo L; Zhang R; Zhang Z; Zou L; Yao M; Xiao H
    Food Res Int; 2016 Oct; 88(Pt A):140-152. PubMed ID: 28847393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.
    McClements DJ
    Adv Colloid Interface Sci; 2012 Jun; 174():1-30. PubMed ID: 22475330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant protein-based emulsions for the delivery of bioactive compounds.
    Can Karaca A; Assadpour E; Jafari SM
    Adv Colloid Interface Sci; 2023 Jun; 316():102918. PubMed ID: 37172542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.