These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37931469)

  • 21. A review of experimental design in forensic taphonomy: moving towards forensic realism.
    Miles KL; Finaughty DA; Gibbon VE
    Forensic Sci Res; 2020 Aug; 5(4):249-259. PubMed ID: 33457043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taphonomic model of decomposition.
    Kõrgesaar K; Jordana X; Gallego G; Defez J; Galtés I
    Leg Med (Tokyo); 2022 May; 56():102031. PubMed ID: 35123354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Canine scavenging of human remains in an indoor setting.
    Steadman DW; Worne H
    Forensic Sci Int; 2007 Nov; 173(1):78-82. PubMed ID: 17210237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A general approach for postmortem interval based on uniformly distributed and interconnected qualitative indicators.
    Matuszewski S
    Int J Legal Med; 2017 May; 131(3):877-884. PubMed ID: 28054103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rodent scavenging of pig remains potentially increases oviposition sites for primary colonizers.
    Flint CA; Sawyer SJ; Rhinesmith-Carranza J; Tomberlin JK
    J Forensic Sci; 2022 Jul; 67(4):1728-1733. PubMed ID: 35262197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The taphonomic impact of scavenger guilds in southern Quebec during summer and fall in two distinct habitats.
    Séguin K; Durand-Guévin A; Lavallée C; Ouimet F; Maisonhaute JÉ; Watson CJ; Forbes SL
    J Forensic Sci; 2022 Mar; 67(2):460-470. PubMed ID: 34725818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applying Knowledge of Species-Typical Scavenging Behavior to the Search and Recovery of Mammalian Skeletal Remains.
    Young A; Stillman R; Smith MJ; Korstjens AH
    J Forensic Sci; 2016 Mar; 61(2):458-466. PubMed ID: 26551615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Scavenging Patterns of Feral Cats on Human Remains in an Outdoor Setting.
    Garcia S; Smith A; Baigent C; Connor M
    J Forensic Sci; 2020 May; 65(3):948-952. PubMed ID: 31703159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of clothing on decomposition and vertebrate scavengers in cooler months of the temperate southwestern Cape, South Africa.
    Spies MJ; Finaughty DA; Friedling LJ; Gibbon VE
    Forensic Sci Int; 2020 Apr; 309():110197. PubMed ID: 32114190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A casework study: The effect of the porcine digestive process on animal carcasses and human teeth.
    Atwood L; Lain R; Kotzander J; McCardle P; Mason B; Raymond J; Sears A
    Forensic Sci Int; 2023 Apr; 345():111617. PubMed ID: 36893679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taphonomy of child-sized remains: a study of scattering and scavenging in Virginia, USA.
    Morton RJ; Lord WD
    J Forensic Sci; 2006 May; 51(3):475-9. PubMed ID: 16696691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval.
    Brooks JW
    Vet Pathol; 2016 Sep; 53(5):929-40. PubMed ID: 26945004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An evaluation of soil chemistry in human cadaver decomposition islands: Potential for estimating postmortem interval (PMI).
    Fancher JP; Aitkenhead-Peterson JA; Farris T; Mix K; Schwab AP; Wescott DJ; Hamilton MD
    Forensic Sci Int; 2017 Oct; 279():130-139. PubMed ID: 28866239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differentiating trauma from taphonomic alterations.
    Sorg MH
    Forensic Sci Int; 2019 Sep; 302():109893. PubMed ID: 31419593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. White-tailed Deer as a Taphonomic Agent: Photographic Evidence of White-tailed Deer Gnawing on Human Bone.
    Meckel LA; McDaneld CP; Wescott DJ
    J Forensic Sci; 2018 Jan; 63(1):292-294. PubMed ID: 28464354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The difficult task of assessing perimortem and postmortem fractures on the skeleton: a blind text on 210 fractures of known origin.
    Cappella A; Amadasi A; Castoldi E; Mazzarelli D; Gaudio D; Cattaneo C
    J Forensic Sci; 2014 Nov; 59(6):1598-601. PubMed ID: 24990801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coprophanaeus lancifer (Linnaeus, 1767) (Coleoptera, Scarabaeidae) activity moves a man-size pig carcass: relevant data for forensic taphonomy.
    Ururahy-Rodrigues A; Rafael JA; Wanderley RF; Marques H; Pujol-Luz JR
    Forensic Sci Int; 2008 Nov; 182(1-3):e19-22. PubMed ID: 18990518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-agent scavenging patterns in Hawai'i: A forensic archaeological and skeletal case study.
    Byrnes JF; Belcher WR
    Sci Justice; 2021 Nov; 61(6):723-734. PubMed ID: 34802646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forensically significant scavenging guilds in the southwest of Western Australia.
    O'Brien RC; Forbes SL; Meyer J; Dadour I
    Forensic Sci Int; 2010 May; 198(1-3):85-91. PubMed ID: 20171028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aquatic Decomposition of Mammalian Corpses: A Forensic Proteomic Approach.
    Mizukami H; Hathway B; Procopio N
    J Proteome Res; 2020 May; 19(5):2122-2135. PubMed ID: 32242669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.