BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37931548)

  • 1. Recycling of hazardous jarosite residues based on hydrothermal crystal transformation.
    He D; Jiang F; Fu X; Liu R; Han H; Sun W; Niu Z; Yue T
    Waste Manag; 2023 Dec; 172():290-298. PubMed ID: 37931548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy.
    Ju S; Zhang Y; Zhang Y; Xue P; Wang Y
    J Hazard Mater; 2011 Aug; 192(2):554-8. PubMed ID: 21684683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource-recycling and energy-saving innovation for iron removal in hydrometallurgy: Crystal transformation of ferric hydroxide precipitates by hydrothermal treatment.
    Niu Z; Li G; He D; Fu X; Sun W; Yue T
    J Hazard Mater; 2021 Aug; 416():125972. PubMed ID: 34492881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.
    Han H; Sun W; Hu Y; Jia B; Tang H
    J Hazard Mater; 2014 Aug; 278():49-54. PubMed ID: 24953935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jarosite characteristics and its utilisation potentials.
    Pappu A; Saxena M; Asolekar SR
    Sci Total Environ; 2006 Apr; 359(1-3):232-43. PubMed ID: 15978656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite.
    Khanmohammadi Hazaveh P; Karimi S; Rashchi F; Sheibani S
    Ecotoxicol Environ Saf; 2020 Oct; 202():110893. PubMed ID: 32615495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation.
    Jin X; Guo C; Tao X; Li X; Xie Y; Dang Z; Lu G
    Environ Pollut; 2024 Jun; 350():124004. PubMed ID: 38641039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation behavior of hazardous jarosite into recyclable hematite in a solution with high concentrations of K
    Xing Y; Deng Z; Wei C; Li X; Li M
    Sci Rep; 2024 Jun; 14(1):13949. PubMed ID: 38886494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material.
    Vithana CL; Sullivan LA; Shepherd T
    Water Res; 2017 Nov; 124():1-10. PubMed ID: 28734957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation.
    Gao K; Hu Y; Guo C; Ke C; He C; Hao X; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2020 Oct; 202():110921. PubMed ID: 32800256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings.
    Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E; Webster RD; Sillanpää M
    Chemosphere; 2020 Nov; 258():127288. PubMed ID: 32947659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans.
    Hou Q; Fang D; Liang J; Zhou L
    PLoS One; 2015; 10(3):e0120966. PubMed ID: 25807372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient extraction of metals (Fe, Zn, Pb) from hazardous jarosite using ionic liquid and waste-derived solvents.
    Kushwaha P; Agarwal M
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39533-39548. PubMed ID: 38822960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions.
    Tang Y; Xie Y; Lu G; Ye H; Dang Z; Wen Z; Tao X; Xie C; Yi X
    Chemosphere; 2020 Sep; 255():126938. PubMed ID: 32388258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of arsenic during reductive dissolution of As(V)-bearing jarosite by a sulfate reducing bacterium.
    Gao K; Hu Y; Guo C; Ke C; Lu G; Dang Z
    J Hazard Mater; 2021 Jan; 402():123717. PubMed ID: 33254757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hazardous jarosite use in developing non-hazardous product for engineering application.
    Asokan P; Saxena M; Asolekar SR
    J Hazard Mater; 2006 Oct; 137(3):1589-99. PubMed ID: 16766121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The positive environmental contribution of jarosite by retaining lead in acid mine drainage areas.
    Figueiredo MO; da Silva TP
    Int J Environ Res Public Health; 2011 May; 8(5):1575-82. PubMed ID: 21655138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of iron species, including biomineralized jarosite, in the iron-hyperaccumulator moss Scopelophila ligulata by Mössbauer, X-ray diffraction, and elemental analyses.
    Nakajima H; Okazawa A; Kubuki S; Shen Q; Itoh K
    Biometals; 2019 Feb; 32(1):171-184. PubMed ID: 30637584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.