BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37931767)

  • 1. Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource.
    Min Lee S; Young Lee J; Hahn JS; Baek SH
    Bioresour Technol; 2024 Jan; 391(Pt A):129920. PubMed ID: 37931767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica.
    Gatter M; Förster A; Bär K; Winter M; Otto C; Petzsch P; Ježková M; Bahr K; Pfeiffer M; Matthäus F; Barth G
    FEMS Yeast Res; 2014 Sep; 14(6):858-72. PubMed ID: 24931727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.
    Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q
    ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil.
    Ng TK; Yu AQ; Ling H; Pratomo Juwono NK; Choi WJ; Leong SSJ; Chang MW
    J Biosci Bioeng; 2020 Jan; 129(1):31-40. PubMed ID: 31320262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica.
    Yu A; Zhao Y; Li J; Li S; Pang Y; Zhao Y; Zhang C; Xiao D
    Microbiologyopen; 2020 Jul; 9(7):e1051. PubMed ID: 32342649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
    Mishra P; Lee NR; Lakshmanan M; Kim M; Kim BG; Lee DY
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):12. PubMed ID: 29560822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.
    Hanko EKR; Denby CM; Sànchez I Nogué V; Lin W; Ramirez KJ; Singer CA; Beckham GT; Keasling JD
    Metab Eng; 2018 Jul; 48():52-62. PubMed ID: 29852272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot.
    Wei LJ; Ma YY; Cheng BQ; Gao Q; Hua Q
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8561-8573. PubMed ID: 34661706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Yarrowia lipolytica for industrial applications.
    Zhu Q; Jackson EN
    Curr Opin Biotechnol; 2015 Dec; 36():65-72. PubMed ID: 26319895
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gao Q; Yang JL; Zhao XR; Liu SC; Liu ZJ; Wei LJ; Hua Q
    J Agric Food Chem; 2020 Sep; 68(39):10730-10740. PubMed ID: 32896122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Yarrowia lipolytica for production of medium-chain fatty acids.
    Rutter CD; Zhang S; Rao CV
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7359-68. PubMed ID: 26129951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering.
    Jin CC; Zhang JL; Song H; Cao YX
    Microb Cell Fact; 2019 May; 18(1):77. PubMed ID: 31053076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel.
    Chen L; Zhang J; Chen WN
    PLoS One; 2014; 9(1):e84853. PubMed ID: 24465440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis.
    Ju JH; Oh BR; Heo SY; Lee YU; Shon JH; Kim CH; Kim YM; Seo JW; Hong WK
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):33-43. PubMed ID: 31549308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Triterpene Ginsenoside Compound K in the Non-conventional Yeast Yarrowia lipolytica.
    Li D; Wu Y; Zhang C; Sun J; Zhou Z; Lu W
    J Agric Food Chem; 2019 Mar; 67(9):2581-2588. PubMed ID: 30757901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Structure of Acyl-CoA Oxidase 3 from
    Kim S; Kim KJ
    J Microbiol Biotechnol; 2018 Apr; 28(4):597-605. PubMed ID: 29429324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism.
    Yuzbasheva EY; Mostova EB; Andreeva NI; Yuzbashev TV; Fedorov AS; Konova IA; Sineoky SP
    Biotechnol Bioeng; 2018 Feb; 115(2):433-443. PubMed ID: 28832949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial synthesis of wax esters.
    Soong YV; Zhao L; Liu N; Yu P; Lopez C; Olson A; Wong HW; Shao Z; Xie D
    Metab Eng; 2021 Sep; 67():428-442. PubMed ID: 34391890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications.
    Fickers P; Benetti PH; Waché Y; Marty A; Mauersberger S; Smit MS; Nicaud JM
    FEMS Yeast Res; 2005 Apr; 5(6-7):527-43. PubMed ID: 15780653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.