These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37931824)
1. A generalized canine transfer function accurately reconstructs central aortic pressure waveforms to enable enhanced pulse wave analysis. Hotek JC; Detwiler TJ; Chirinos JA; Regan CP J Pharmacol Toxicol Methods; 2023; 124():107476. PubMed ID: 37931824 [TBL] [Abstract][Full Text] [Related]
2. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Hope SA; Meredith IT; Cameron JD Clin Sci (Lond); 2004 Aug; 107(2):205-11. PubMed ID: 15139848 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive pulse waveform analysis in clinical trials: similarity of two methods for calculating aortic systolic pressure. Adji A; Hirata K; Hoegler S; O'Rourke MF Am J Hypertens; 2007 Aug; 20(8):917-22. PubMed ID: 17679043 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous adaption of the gain and phase of a generalized transfer function for aortic pressure waveform estimation. Du S; Yao Y; Sun G; Mukkamala R; Xu L Comput Biol Med; 2022 Feb; 141():105187. PubMed ID: 34995874 [TBL] [Abstract][Full Text] [Related]
5. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure. Shih YT; Cheng HM; Sung SH; Hu WC; Chen CH Hypertension; 2014 Apr; 63(4):865-70. PubMed ID: 24420554 [TBL] [Abstract][Full Text] [Related]
6. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Pauca AL; O'Rourke MF; Kon ND Hypertension; 2001 Oct; 38(4):932-7. PubMed ID: 11641312 [TBL] [Abstract][Full Text] [Related]
7. Comparison of effects of peripheral vasculature on tonometric radial pulse and cuff-based brachial pulse waveform as used in estimation of central aortic pressures. Butlin M; Tan I; Qasem A; Avolio AP Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083400 [TBL] [Abstract][Full Text] [Related]
8. Single measurement estimation of central blood pressure using an arterial transfer function. Murphy L; Chase JG Comput Methods Programs Biomed; 2023 Feb; 229():107254. PubMed ID: 36459818 [TBL] [Abstract][Full Text] [Related]
9. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states. Papaioannou TG; Lekakis JP; Karatzis EN; Papamichael CM; Stamatelopoulos KS; Protogerou AD; Mavrikakis M; Stefanadis C Int J Cardiol; 2006 Jun; 110(1):46-52. PubMed ID: 16229910 [TBL] [Abstract][Full Text] [Related]
10. An adaptive transfer function for deriving the aortic pressure waveform from a peripheral artery pressure waveform. Swamy G; Xu D; Olivier NB; Mukkamala R Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1956-63. PubMed ID: 19783780 [TBL] [Abstract][Full Text] [Related]
11. Measurement of central aortic pulse pressure: noninvasive brachial cuff-based estimation by a transfer function vs. a novel pulse wave analysis method. Cheng HM; Sung SH; Shih YT; Chuang SY; Yu WC; Chen CH Am J Hypertens; 2012 Nov; 25(11):1162-9. PubMed ID: 22874891 [TBL] [Abstract][Full Text] [Related]
12. Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms. Swamy G; Ling Q; Li T; Mukkamala R Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2257-64. PubMed ID: 17208992 [TBL] [Abstract][Full Text] [Related]
13. Can a clinically useful aortic pressure wave be derived from a radial pressure wave? Söderström S; Nyberg G; O'Rourke MF; Sellgren J; Pontén J Br J Anaesth; 2002 Apr; 88(4):481-8. PubMed ID: 12066722 [TBL] [Abstract][Full Text] [Related]
15. Assessment of Central Arterial Hemodynamics in Children: Comparison of Noninvasive and Invasive Measurements. Cai TY; Haghighi MM; Roberts PA; Mervis J; Qasem A; Butlin M; Celermajer DS; Avolio A; Skilton MR; Ayer JG Am J Hypertens; 2021 Mar; 34(2):163-171. PubMed ID: 32902618 [TBL] [Abstract][Full Text] [Related]
16. Development and characterization of canine-specific computational models to predict pulsatile arterial hemodynamics and ventricular-arterial coupling. Hotek JC; Chirinos JA; Detwiler TJ; Regan HK; Regan CP Physiol Rep; 2023 Jun; 11(11):e15731. PubMed ID: 37269177 [TBL] [Abstract][Full Text] [Related]
17. Intra-arterial analysis of the best calibration methods to estimate aortic blood pressure. Picone DS; Schultz MG; Peng X; Black JA; Dwyer N; Roberts-Thomson P; Qasem A; Sharman JE J Hypertens; 2019 Feb; 37(2):307-315. PubMed ID: 30234775 [TBL] [Abstract][Full Text] [Related]
18. From peripheral finger-derived pulse waveforms to aortic pressure waveform features: an application of a generalized transfer function. Cox JR; Tan I; Qasem A; Avolio AP; Butlin M Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083360 [TBL] [Abstract][Full Text] [Related]
19. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Chen CH; Nevo E; Fetics B; Pak PH; Yin FC; Maughan WL; Kass DA Circulation; 1997 Apr; 95(7):1827-36. PubMed ID: 9107170 [TBL] [Abstract][Full Text] [Related]
20. Wave reflections and global arterial compliance during normal human pregnancy. Rodriguez C; Chi YY; Chiu KH; Zhai X; Lingis M; Williams RS; Rhoton-Vlasak A; Nichols WW; Petersen JW; Segal MS; Conrad KP; Mohandas R Physiol Rep; 2018 Dec; 6(24):e13947. PubMed ID: 30578623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]