BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3793186)

  • 21. The role of AlkB protein in repair of 1,N⁶-ethenoadenine in Escherichia coli cells.
    Maciejewska AM; Sokołowska B; Nowicki A; Kuśmierek JT
    Mutagenesis; 2011 May; 26(3):401-6. PubMed ID: 21193516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous and exogenous DNA lesions recognized by N-alkylpurine-DNA glycosylases.
    Borys E; Kuśmierek JT
    Acta Biochim Pol; 1998; 45(2):579-86. PubMed ID: 9821886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repair of O6-methyl-guanine residues in DNA takes place by a similar mechanism in extracts from HeLa cells, human liver, and rat liver.
    Myrnes B; Giercksky KE; Krokan H
    J Cell Biochem; 1982; 20(4):381-92. PubMed ID: 7183679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA.
    Saparbaev M; Kleibl K; Laval J
    Nucleic Acids Res; 1995 Sep; 23(18):3750-5. PubMed ID: 7479006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of base excision repair in the repair of DNA adducts formed by a series of nitrogen mustard-containing analogues of distamycin of increasing binding site size.
    Brooks N; McHugh PJ; Lee M; Hartley JA
    Anticancer Drug Des; 1999 Feb; 14(1):11-8. PubMed ID: 10363024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Escherichia coli MutY and Fpg utilize a processive mechanism for target location.
    Francis AW; David SS
    Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate specificity of human methylpurine DNA N-glycosylase.
    Asaeda A; Ide H; Asagoshi K; Matsuyama S; Tano K; Murakami A; Takamori Y; Kubo K
    Biochemistry; 2000 Feb; 39(8):1959-65. PubMed ID: 10684645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.
    Zdżalik D; Domańska A; Prorok P; Kosicki K; van den Born E; Falnes PØ; Rizzo CJ; Guengerich FP; Tudek B
    DNA Repair (Amst); 2015 Jun; 30():1-10. PubMed ID: 25797601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insights by molecular dynamics simulations into differential repair efficiency for ethano-A versus etheno-A adducts by the human alkylpurine-DNA N-glycosylase.
    Guliaev AB; Hang B; Singer B
    Nucleic Acids Res; 2002 Sep; 30(17):3778-87. PubMed ID: 12202763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.
    Kubota Y; Nash RA; Klungland A; Schär P; Barnes DE; Lindahl T
    EMBO J; 1996 Dec; 15(23):6662-70. PubMed ID: 8978692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes.
    Plosky B; Samson L; Engelward BP; Gold B; Schlaen B; Millas T; Magnotti M; Schor J; Scicchitano DA
    DNA Repair (Amst); 2002 Aug; 1(8):683-96. PubMed ID: 12509290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tobacco BY-2 cells excise both 3-methyladenine and 7-methylguanine from methylated DNA.
    Kraszewska E; Dobrzańska M; Tudek B
    Mutat Res; 1998 Nov; 409(2):91-5. PubMed ID: 9838925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneous repair of N-methylpurines at the nucleotide level in normal human cells.
    Ye N; Holmquist GP; O'Connor TR
    J Mol Biol; 1998 Nov; 284(2):269-85. PubMed ID: 9813117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular defense mechanisms against alkylation of DNA.
    Lindahl T; Rydberg B; Hjelmgren T; Olsson M; Jacobsson A
    Basic Life Sci; 1982; 20():89-102. PubMed ID: 7052056
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibition of enzymic incision of thymine dimers by covalently bound guanine adducts of 4-nitroquinoline-1-oxide in DNA.
    Duker NJ; Merkel GW
    Cancer Res; 1986 May; 46(5):2374-6. PubMed ID: 3084066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excision repair of 2,5-diaziridinyl-1,4-benzoquinone (DZQ)-DNA adduct by bacterial and mammalian 3-methyladenine-DNA glycosylases.
    Lee CS
    Mol Cells; 2000 Dec; 10(6):723-7. PubMed ID: 11211879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1,N(2)-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkylpurine-DNA-N-glycosylase.
    Saparbaev M; Langouët S; Privezentzev CV; Guengerich FP; Cai H; Elder RH; Laval J
    J Biol Chem; 2002 Jul; 277(30):26987-93. PubMed ID: 12016206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: specificity of mutations and modulation by induction of the adaptive response to alkylating agents.
    Mroczkowska MM; Kolasa IK; Kusmierek JT
    Mutagenesis; 1993 Jul; 8(4):341-8. PubMed ID: 8377654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs.
    Boldogh I; Milligan D; Lee MS; Bassett H; Lloyd RS; McCullough AK
    Nucleic Acids Res; 2001 Jul; 29(13):2802-9. PubMed ID: 11433026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1,N6-ethenoadenine is preferred over 3-methyladenine as substrate by a cloned human N-methylpurine-DNA glycosylase (3-methyladenine-DNA glycosylase).
    Dosanjh MK; Roy R; Mitra S; Singer B
    Biochemistry; 1994 Feb; 33(7):1624-8. PubMed ID: 8110764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.