BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3793194)

  • 1. Cyclic adduct formation at structural perturbations in supercoiled DNA molecules.
    Lilley DM
    IARC Sci Publ; 1986; (70):83-99. PubMed ID: 3793194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide.
    Lilley DM; Palecek E
    EMBO J; 1984 May; 3(5):1187-92. PubMed ID: 6329743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmium tetroxide probing of local DNA structure in linear and supercoiled plasmids containing curvature-inducing sequences.
    Palecek E; Makaturová-Rasovská E; Diekmann S
    Gen Physiol Biophys; 1988 Aug; 7(4):379-93. PubMed ID: 3181745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized chemical hyperreactivity in supercoiled DNA: evidence for base unpairing in sequences that induce low-salt cruciform extrusion.
    Furlong JC; Sullivan KM; Murchie AI; Gough GW; Lilley DM
    Biochemistry; 1989 Mar; 28(5):2009-17. PubMed ID: 2541769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of ColE1 DNA with osmium tetroxide generates positively supercoiled molecules.
    Vojtísková M; Stokrová J; Palecek E
    J Biomol Struct Dyn; 1985 Feb; 2(5):1013-9. PubMed ID: 3916933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B-Z junctions in supercoiled pRW751 DNA contain unpaired bases or non-Watson-Crick base pairs.
    Palecek E; Boubliková P; Nejedlý K; Galazka G; Klysik J
    J Biomol Struct Dyn; 1987 Oct; 5(2):297-306. PubMed ID: 3271475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interactions of enzyme and chemical probes with inverted repeats in supercoiled DNA.
    Lilley DM; Hallam LR
    J Biomol Struct Dyn; 1983 Oct; 1(1):169-82. PubMed ID: 6401110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural perturbation in supercoiled DNA: hypersensitivity to modification by a single-strand-selective chemical reagent conferred by inverted repeat sequences.
    Lilley DM
    Nucleic Acids Res; 1983 May; 11(10):3097-112. PubMed ID: 6304622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of the structural distortions at the junctions between B and Z segments in negatively supercoiled DNA by osmium tetroxide.
    Nejedlý K; Kwinkowski M; Gałazka G; Kłysik J; Palecek E
    J Biomol Struct Dyn; 1985 Dec; 3(3):467-78. PubMed ID: 3917032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing of DNA structure with osmium tetroxide. Effect of ligands.
    Palecek E; Boublíková P; Nejedlý K
    Biophys Chem; 1989 Sep; 34(1):63-8. PubMed ID: 2611341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA.
    Tsen H; Levene SD
    J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual protonated structure in the homopurine.homopyrimidine tract of supercoiled and linearized plasmids recognized by chemical probes.
    Vojtisková M; Palecek E
    J Biomol Struct Dyn; 1987 Oct; 5(2):283-96. PubMed ID: 2856029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmium tetroxide: a new probe for site-specific distortions in supercoiled DNAs.
    Glikin GC; Vojtískova M; Rena-Descalzi L; Palecek E
    Nucleic Acids Res; 1984 Feb; 12(3):1725-35. PubMed ID: 6322118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of restriction endonuclease cleavage due to site-specific chemical modification of the B-Z junction in supercoiled DNA.
    Palecek E; Boublíková P; Galazka G; Klysik J
    Gen Physiol Biophys; 1987 Aug; 6(4):327-41. PubMed ID: 2822529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical probes reveal no evidence of Hoogsteen base pairing in complexes formed between echinomycin and DNA in solution.
    McLean MJ; Waring MJ
    J Mol Recognit; 1988 Jun; 1(3):138-51. PubMed ID: 3273225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.