These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37932117)

  • 41. An Overview on Bacteriophages: A Natural Nanostructured Antibacterial Agent.
    Rastogi V; Pragya ; Verma N; Mishra AK; Nath G; Gaur PK; Verma A
    Curr Drug Deliv; 2018; 15(1):3-20. PubMed ID: 27048165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The disparate effects of bacteriophages on antibiotic-resistant bacteria.
    Torres-Barceló C
    Emerg Microbes Infect; 2018 Oct; 7(1):168. PubMed ID: 30302018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current Clinical Landscape and Global Potential of Bacteriophage Therapy.
    Hitchcock NM; Devequi Gomes Nunes D; Shiach J; Valeria Saraiva Hodel K; Dantas Viana Barbosa J; Alencar Pereira Rodrigues L; Coler BS; Botelho Pereira Soares M; Badaró R
    Viruses; 2023 Apr; 15(4):. PubMed ID: 37113000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacteriophages: The promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection.
    Shariati A; Noei M; Chegini Z
    J Clin Lab Anal; 2023 May; 37(9-10):e24932. PubMed ID: 37377167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phage Therapy in the Era of Multidrug Resistance in Bacteria: A Systematic Review.
    Aranaga C; Pantoja LD; Martínez EA; Falco A
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacteriophages as potential new therapeutics to replace or supplement antibiotics.
    Kutateladze M; Adamia R
    Trends Biotechnol; 2010 Dec; 28(12):591-5. PubMed ID: 20810181
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phage Therapy as a Protective Tool Against Pathogenic Bacteria: How Far We Are?
    Singh K; Biswas A; Chakrabarti AK; Dutta S
    Curr Pharm Biotechnol; 2023; 24(10):1277-1290. PubMed ID: 36503459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Back to the future: bacteriophages as promising therapeutic tools.
    Domingo-Calap P; Georgel P; Bahram S
    HLA; 2016 Mar; 87(3):133-40. PubMed ID: 26891965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies.
    Mangalea MR; Duerkop BA
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32094257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Past and Future of Phage Therapy and Phage-Derived Proteins in Patients with Bone and Joint Infection.
    Ferry T; Kolenda C; Briot T; Souche A; Lustig S; Josse J; Batailler C; Pirot F; Medina M; Leboucher G; Laurent F; On Behalf Of The Lyon Bji Study Group ; On Behalf Of The PHAGEinLYON Study Group
    Viruses; 2021 Dec; 13(12):. PubMed ID: 34960683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions.
    Zou G; He L; Rao J; Song Z; Du H; Li R; Wang W; Zhou Y; Liang L; Chen H; Li J
    FEMS Microbiol Rev; 2023 Jul; 47(4):. PubMed ID: 37442611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacteriophage's Dualism in Therapy.
    Krylov VN; Bourkaltseva MV; Pleteneva EA
    Trends Microbiol; 2019 Jul; 27(7):566-567. PubMed ID: 31126841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phages amid antimicrobial resistance.
    Mohan Raj JR; Karunasagar I
    Crit Rev Microbiol; 2019; 45(5-6):701-711. PubMed ID: 31775552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential.
    Wang X; Tang J; Dang W; Xie Z; Zhang F; Hao X; Sun S; Liu X; Luo Y; Li M; Gu Y; Wang Y; Chen Q; Shen X; Xu L
    Microbiol Spectr; 2023 Jun; 11(3):e0463622. PubMed ID: 37125933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The applications of animal models in phage therapy: An update.
    Mehmood Khan F; Manohar P; Singh Gondil V; Mehra N; Kayode Oyejobi G; Odiwuor N; Ahmad T; Huang G
    Hum Vaccin Immunother; 2023 Dec; 19(1):2175519. PubMed ID: 36935353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phage therapy: A renewed approach against oral diseases caused by Enterococcus faecalis infections.
    Yang D; Xiang Y; Song F; Li H; Ji X
    Microb Pathog; 2024 Apr; 189():106574. PubMed ID: 38354990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections.
    Wang X; Xie Z; Zhao J; Zhu Z; Yang C; Liu Y
    Front Cell Infect Microbiol; 2021; 11():758392. PubMed ID: 34938668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phage therapy of wound-associated infections.
    Zyman A; Górski A; Międzybrodzki R
    Folia Microbiol (Praha); 2022 Apr; 67(2):193-201. PubMed ID: 35028881
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope.
    Kulshrestha M; Tiwari M; Tiwari V
    Microb Pathog; 2024 Jan; 186():106467. PubMed ID: 38036110
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards Inhaled Phage Therapy in Western Europe.
    Wienhold SM; Lienau J; Witzenrath M
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30909579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.