These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37932372)

  • 1. The DNA-binding induced (de)AMPylation activity of a Coxiella burnetii Fic enzyme targets Histone H3.
    Höpfner D; Cichy A; Pogenberg V; Krisp C; Mezouar S; Bach NC; Grotheer J; Zarza SM; Martinez E; Bonazzi M; Feige MJ; Sieber SA; Schlüter H; Itzen A
    Commun Biol; 2023 Nov; 6(1):1124. PubMed ID: 37932372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting AMPylation through the lens of Fic enzymes.
    Gulen B; Itzen A
    Trends Microbiol; 2022 Apr; 30(4):350-363. PubMed ID: 34531089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPylation of small GTPases by Fic enzymes.
    Gulen B; Casey A; Orth K
    FEBS Lett; 2023 Mar; 597(6):883-891. PubMed ID: 36239538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism.
    Dedic E; Alsarraf H; Welner DH; Østergaard O; Klychnikov OI; Hensbergen PJ; Corver J; van Leeuwen HC; Jørgensen R
    J Biol Chem; 2016 Jun; 291(25):13286-300. PubMed ID: 27076635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncanonical Inhibition of mTORC1 by Coxiella burnetii Promotes Replication within a Phagolysosome-Like Vacuole.
    Larson CL; Sandoz KM; Cockrell DC; Heinzen RA
    mBio; 2019 Feb; 10(1):. PubMed ID: 30723133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fic Proteins Inhibit the Activity of Topoisomerase IV by AMPylation in Diverse Bacteria.
    Lu CH; McCloskey A; Chen FR; Nakayasu ES; Zhang LQ; Luo ZQ
    Front Microbiol; 2020; 11():2084. PubMed ID: 32983060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fic-mediated AMPylation tempers the unfolded protein response during physiological stress.
    Casey AK; Gray HF; Chimalapati S; Hernandez G; Moehlman AT; Stewart N; Fields HA; Gulen B; Servage KA; Stefanius K; Blevins A; Evers BM; Krämer H; Orth K
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2208317119. PubMed ID: 35914137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fido, a novel AMPylation domain common to fic, doc, and AvrB.
    Kinch LN; Yarbrough ML; Orth K; Grishin NV
    PLoS One; 2009 Jun; 4(6):e5818. PubMed ID: 19503829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.
    Lu C; Nakayasu ES; Zhang LQ; Luo ZQ
    Sci Signal; 2016 Jan; 9(412):ra11. PubMed ID: 26814232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication.
    Carey KL; Newton HJ; Lührmann A; Roy CR
    PLoS Pathog; 2011 May; 7(5):e1002056. PubMed ID: 21637816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependency of
    Larson CL; Beare PA; Heinzen RA
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies.
    Casey AK; Moehlman AT; Zhang J; Servage KA; Krämer H; Orth K
    J Biol Chem; 2017 Dec; 292(51):21193-21204. PubMed ID: 29089387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Ca
    Veyron S; Oliva G; Rolando M; Buchrieser C; Peyroche G; Cherfils J
    Nat Commun; 2019 Mar; 10(1):1142. PubMed ID: 30850593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The secreted protein kinase CstK from
    Martinez E; Huc-Brandt S; Brelle S; Allombert J; Cantet F; Gannoun-Zaki L; Burette M; Martin M; Letourneur F; Bonazzi M; Molle V
    J Biol Chem; 2020 May; 295(21):7391-7403. PubMed ID: 32303638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPylation: Something Old is New Again.
    Woolery AR; Luong P; Broberg CA; Orth K
    Front Microbiol; 2010; 1():113. PubMed ID: 21607083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental strategy for the identification of AMPylation targets from complex protein samples.
    Pieles K; Glatter T; Harms A; Schmidt A; Dehio C
    Proteomics; 2014 May; 14(9):1048-52. PubMed ID: 24677795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.
    Larson CL; Beare PA; Voth DE; Howe D; Cockrell DC; Bastidas RJ; Valdivia RH; Heinzen RA
    Infect Immun; 2015 Feb; 83(2):661-70. PubMed ID: 25422265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth.
    Hicks LD; Raghavan R; Battisti JM; Minnick MF
    J Bacteriol; 2010 Apr; 192(8):2077-84. PubMed ID: 20173000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coxiella burnetii Requires Host Eukaryotic Initiation Factor 2α Activity for Efficient Intracellular Replication.
    Brann KR; Fullerton MS; Voth DE
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32284364
    [No Abstract]   [Full Text] [Related]  

  • 20. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening.
    McDonough JA; Newton HJ; Klum S; Swiss R; Agaisse H; Roy CR
    mBio; 2013 Jan; 4(1):e00606-12. PubMed ID: 23362322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.