BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37932829)

  • 1. Impact of xylose epimerase on sugar assimilation and sensing in recombinant Saccharomyces cerevisiae carrying different xylose-utilization pathways.
    Persson VC; Perruca Foncillas R; Anderes TR; Ginestet C; Gorwa-Grauslund M
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):168. PubMed ID: 37932829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Garcia Sanchez R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Microb Cell Fact; 2007 Feb; 6():5. PubMed ID: 17280608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylose fermentation efficiency of industrial
    Cunha JT; Soares PO; Romaní A; Thevelein JM; Domingues L
    Biotechnol Biofuels; 2019; 12():20. PubMed ID: 30705706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.
    Cadete RM; de Las Heras AM; Sandström AG; Ferreira C; Gírio F; Gorwa-Grauslund MF; Rosa CA; Fonseca C
    Biotechnol Biofuels; 2016; 9():167. PubMed ID: 27499810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bergdahl B; van Niel EW; Gorwa-Grauslund MF
    Metab Eng; 2011 Sep; 13(5):508-17. PubMed ID: 21642010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of xylose fermentation by two high-performance engineered strains of
    Li X; Park A; Estrela R; Kim SR; Jin YS; Cate JH
    Biotechnol Rep (Amst); 2016 Mar; 9():53-56. PubMed ID: 28352592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.
    Hou J; Suo F; Wang C; Li X; Shen Y; Bao X
    BMC Biotechnol; 2014 Feb; 14():13. PubMed ID: 24529074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation.
    Anderlund M; Rådström P; Hahn-Hägerdal B
    Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway.
    Borgström C; Wasserstrom L; Almqvist H; Broberg K; Klein B; Noack S; Lidén G; Gorwa-Grauslund MF
    Metab Eng; 2019 Sep; 55():1-11. PubMed ID: 31150803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation.
    Osiro KO; Brink DP; Borgström C; Wasserstrom L; Carlquist M; Gorwa-Grauslund MF
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29315378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Biofuels; 2009 May; 2():9. PubMed ID: 19416504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae.
    Petschacher B; Nidetzky B
    Microb Cell Fact; 2008 Mar; 7():9. PubMed ID: 18346277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR.
    Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ
    Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation.
    Walfridsson M; Anderlund M; Bao X; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):218-24. PubMed ID: 9299780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans.
    Guo J; Huang S; Chen Y; Guo X; Xiao D
    Microb Cell Fact; 2018 Apr; 17(1):64. PubMed ID: 29712559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.