BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 37933283)

  • 1. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms.
    Ma J; Li N; Wang J; Liu Z; Han Y; Zeng Y
    Exploration (Beijing); 2023 Oct; 3(5):20220161. PubMed ID: 37933283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma.
    Cai H; Dai X; Guo X; Zhang L; Cao K; Yan F; Ji B; Liu Y
    Acta Biomater; 2021 Jun; 127():276-286. PubMed ID: 33812073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment.
    Zhang L; Oudeng G; Wen F; Liao G
    Biomater Res; 2022 Nov; 26(1):61. PubMed ID: 36348441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy.
    Ge Y; Zhang J; Jin K; Ye Z; Wang W; Zhou Z; Ye J
    Acta Biomater; 2023 Sep; 167():551-563. PubMed ID: 37302731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies.
    Zhao Y; Chen BQ; Kankala RK; Wang SB; Chen AZ
    ACS Biomater Sci Eng; 2020 Sep; 6(9):4799-4815. PubMed ID: 33455213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal-chemodynamic synergistic antitumor therapy.
    Qin Z; Qiu M; Zhang Q; Yang S; Liao G; Xiong Z; Xu Z
    J Mater Chem B; 2021 Nov; 9(42):8882-8896. PubMed ID: 34693959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing.
    Wang R; He Z; Cai P; Zhao Y; Gao L; Yang W; Zhao Y; Gao X; Gao F
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13964-13972. PubMed ID: 30912920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent.
    Wu C; Zhu A; Li D; Wang L; Yang H; Zeng H; Liu Y
    Expert Opin Drug Deliv; 2016; 13(1):155-65. PubMed ID: 26559178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitive drug-loading system based on copper sulfide nanoparticles for combined photothermal therapy and chemotherapy in vivo.
    Yuan Z; Qu S; He Y; Xu Y; Liang L; Zhou X; Gui L; Gu Y; Chen H
    Biomater Sci; 2018 Nov; 6(12):3219-3230. PubMed ID: 30255863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-triggered OVA release based on CuS@poly(lactide-co-glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumor.
    Chen Z; Zhang Q; Zeng L; Zhang J; Liu Z; Zhang M; Zhang X; Xu H; Song H; Tao C
    Pharmacol Res; 2020 Aug; 158():104902. PubMed ID: 32417504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanobipyramid@copper sulfide nanotheranostics for image-guided NIR-II photo/chemodynamic cancer therapy with enhanced immune response.
    Chen Y; Liu P; Zhou C; Zhang T; Zhou T; Men D; Jiang G; Hang L
    Acta Biomater; 2023 Mar; 158():649-659. PubMed ID: 36623783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer.
    Niu S; Zhang X; Williams GR; Wu J; Gao F; Fu Z; Chen X; Lu S; Zhu LM
    Acta Biomater; 2021 May; 126():408-420. PubMed ID: 33731303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cetuximab-modified CuS nanoparticles integrating near-infrared-II-responsive photothermal therapy and anti-vessel treatment.
    Li B; Jiang Z; Xie D; Wang Y; Lao X
    Int J Nanomedicine; 2018; 13():7289-7302. PubMed ID: 30510418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress of organic photothermal agents delivery and synergistic therapy systems.
    Li Y; Qi H; Geng Y; Li L; Cai X
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113743. PubMed ID: 38215604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma.
    Ji B; Cai H; Yang Y; Peng F; Song M; Sun K; Yan F; Liu Y
    Acta Biomater; 2020 Jul; 111():363-372. PubMed ID: 32434082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy.
    Curcio A; Silva AKA; Cabana S; Espinosa A; Baptiste B; Menguy N; Wilhelm C; Abou-Hassan A
    Theranostics; 2019; 9(5):1288-1302. PubMed ID: 30867831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CeO
    Zhang J; Hu M; Wen C; Liu J; Yu F; Long J; Lin XC
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37683677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronic acid-modified manganese dioxide-enveloped hollow copper sulfide nanoparticles as a multifunctional system for the co-delivery of chemotherapeutic drugs and photosensitizers for efficient synergistic antitumor treatments.
    Li X; Pan Y; Zhou J; Yi G; He C; Zhao Z; Zhang Y
    J Colloid Interface Sci; 2022 Jan; 605():296-310. PubMed ID: 34329981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo.
    Peng S; He Y; Er M; Sheng Y; Gu Y; Chen H
    Biomater Sci; 2017 Feb; 5(3):475-484. PubMed ID: 28078340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy.
    Zhang M; Qin X; Xu W; Wang Y; Song Y; Garg S; Luan Y
    J Colloid Interface Sci; 2021 Jul; 594():493-501. PubMed ID: 33774405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.