These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3793340)

  • 21. Adaptation of human skeletal muscle to endurance training of long duration.
    Schantz P; Henriksson J; Jansson E
    Clin Physiol; 1983 Apr; 3(2):141-51. PubMed ID: 6682735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B; Henriksson J
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.
    van der Zwaard S; van der Laarse WJ; Weide G; Bloemers FW; Hofmijster MJ; Levels K; Noordhof DA; de Koning JJ; de Ruiter CJ; Jaspers RT
    FASEB J; 2018 Apr; 32(4):2110-2123. PubMed ID: 29217665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA.
    Sjödin B; Jacobs I; Svedenhag J
    Eur J Appl Physiol Occup Physiol; 1982; 49(1):45-57. PubMed ID: 6213407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single muscle fiber enzyme shifts with hindlimb suspension and immobilization.
    Fitts RH; Brimmer CJ; Heywood-Cooksey A; Timmerman RJ
    Am J Physiol; 1989 May; 256(5 Pt 1):C1082-91. PubMed ID: 2719097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical and histochemical adaptation to sprint training in young athletes.
    Cadefau J; Casademont J; Grau JM; Fernández J; Balaguer A; Vernet M; Cussó R; Urbano-Márquez A
    Acta Physiol Scand; 1990 Nov; 140(3):341-51. PubMed ID: 2082703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-body energy metabolism and skeletal muscle biochemical characteristics.
    Zurlo F; Nemeth PM; Choksi RM; Sesodia S; Ravussin E
    Metabolism; 1994 Apr; 43(4):481-6. PubMed ID: 8159108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists.
    Vikmoen O; Ellefsen S; Trøen Ø; Hollan I; Hanestadhaugen M; Raastad T; Rønnestad BR
    Scand J Med Sci Sports; 2016 Apr; 26(4):384-96. PubMed ID: 25892654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic enzyme activity patterns in muscle biopsy samples in different athletes.
    Boros-Hatfaludy S; Fekete G; Apor P
    Eur J Appl Physiol Occup Physiol; 1986; 55(3):334-8. PubMed ID: 3732262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of endurance training on the ventilatory response to exercise in elite cyclists.
    Hoogeveen AR
    Eur J Appl Physiol; 2000 May; 82(1-2):45-51. PubMed ID: 10879442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure.
    Sullivan MJ; Green HJ; Cobb FR
    Circulation; 1990 Feb; 81(2):518-27. PubMed ID: 2297859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle fiber types in women athletes and non-athletes.
    Prince FP; Hikida RS; Hagerman FC
    Pflugers Arch; 1977 Oct; 371(1-2):161-5. PubMed ID: 145580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
    Borges O; Essén-Gustavsson B
    Acta Physiol Scand; 1989 May; 136(1):29-36. PubMed ID: 2773660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic threshold, skeletal muscle enzymes and fiber composition in young female cross-country skiers.
    Rusko H; Rahkila P; Karvinen E
    Acta Physiol Scand; 1980 Mar; 108(3):263-8. PubMed ID: 7376921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of a reduced exercise duration taper programme on performance and muscle enzymes of endurance cyclists.
    Neary JP; Martin TP; Reid DC; Burnham R; Quinney HA
    Eur J Appl Physiol Occup Physiol; 1992; 65(1):30-6. PubMed ID: 1505537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle properties and performance in elite female track athletes.
    Gregor RJ; Edgerton VR; Rozenek R; Castleman KR
    Eur J Appl Physiol Occup Physiol; 1981; 47(4):355-64. PubMed ID: 6460614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Body composition, VO2 max and O2 debt max in elite senior high school male cyclists].
    Tsunawake N; Tahara Y; Yukawa K; Senju H
    Ann Physiol Anthropol; 1993 Nov; 12(6):351-62. PubMed ID: 8123185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of training status on fibers of the musculus vastus lateralis in professional road cyclists.
    Rodríguez LP; López-Rego J; Calbet JA; Valero R; Varela E; Ponce J
    Am J Phys Med Rehabil; 2002 Sep; 81(9):651-60. PubMed ID: 12172517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of heart transplantation on skeletal muscle metabolic enzyme reserve and fiber type in end-stage heart failure patients.
    Pierce GL; Magyari PM; Aranda JM; Edwards DG; Hamlin SA; Hill JA; Braith RW
    Clin Transplant; 2007; 21(1):94-100. PubMed ID: 17302597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.