These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37934627)

  • 21. PAP(248-286) Conformational Changes during the Lag Phase of Amyloid Fibril Formation.
    Kusova AM; Yulmetov AR; Blokhin DS
    Biochemistry; 2023 Jun; 62(12):1906-1915. PubMed ID: 37246528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of Aβ42 Aggregation.
    Zimmermann MR; Bera SC; Meisl G; Dasadhikari S; Ghosh S; Linse S; Garai K; Knowles TPJ
    J Am Chem Soc; 2021 Oct; 143(40):16621-16629. PubMed ID: 34582216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Prenucleation Equilibrium of the Parathyroid Hormone Determines the Critical Aggregation Concentration and Amyloid Fibril Nucleation.
    Voigt B; Bhatia T; Hesselbarth J; Baumann M; Schmidt C; Ott M; Balbach J
    Chemphyschem; 2023 Oct; 24(19):e202300439. PubMed ID: 37477386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Primary Nucleation Kinetics of Short Fibril-Forming Amyloidogenic Peptides.
    Luiken JA; Bolhuis PG
    J Phys Chem B; 2015 Oct; 119(39):12568-79. PubMed ID: 26340561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Mechanism of Amyloid Fibril Formation.
    Galzitskaya O
    Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compact fibril-like structure of amyloid β-peptide (1-42) monomers.
    Barz B; Buell AK; Nath S
    Chem Commun (Camb); 2021 Jan; 57(7):947-950. PubMed ID: 33399148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Principles governing oligomer formation in amyloidogenic peptides.
    Straub JE; Thirumalai D
    Curr Opin Struct Biol; 2010 Apr; 20(2):187-95. PubMed ID: 20106655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amyloid fibrillation kinetics: insight from atomistic nucleation theory.
    Cabriolu R; Auer S
    J Mol Biol; 2011 Aug; 411(1):275-85. PubMed ID: 21645521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip.
    Bacci M; Vymětal J; Mihajlovic M; Caflisch A; Vitalis A
    J Chem Theory Comput; 2017 Oct; 13(10):5117-5130. PubMed ID: 28870064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils.
    Qiang W; Yau WM; Luo Y; Mattson MP; Tycko R
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4443-8. PubMed ID: 22403062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Characteristics of Monomeric Aβ42 on Fibril in the Early Stage of Secondary Nucleation Process.
    Noda K; Tachi Y; Okamoto Y
    ACS Chem Neurosci; 2020 Oct; 11(19):2989-2998. PubMed ID: 32794732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.
    Kahler A; Sticht H; Horn AH
    PLoS One; 2013; 8(7):e70521. PubMed ID: 23936224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta2-microglobulin amyloid fragment organization and morphology and its comparison to Abeta suggests that amyloid aggregation pathways are sequence specific.
    Zheng J; Jang H; Nussinov R
    Biochemistry; 2008 Feb; 47(8):2497-509. PubMed ID: 18215070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Branching in amyloid fibril growth.
    Andersen CB; Yagi H; Manno M; Martorana V; Ban T; Christiansen G; Otzen DE; Goto Y; Rischel C
    Biophys J; 2009 Feb; 96(4):1529-36. PubMed ID: 19217869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amyloid Fibril Formation of Arctic Amyloid-β 1-42 Peptide is Efficiently Inhibited by the BRICHOS Domain.
    Zhong X; Kumar R; Wang Y; Biverstål H; Ingeborg Jegerschöld C; J B Koeck P; Johansson J; Abelein A; Chen G
    ACS Chem Biol; 2022 Aug; 17(8):2201-2211. PubMed ID: 35876740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-replication of A
    Curk S; Krausser J; Meisl G; Frenkel D; Linse S; Michaels TCT; Knowles TPJ; Šarić A
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2220075121. PubMed ID: 38335256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin.
    Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM
    Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scanning cysteine mutagenesis analysis of Abeta-(1-40) amyloid fibrils.
    Shivaprasad S; Wetzel R
    J Biol Chem; 2006 Jan; 281(2):993-1000. PubMed ID: 16263715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical unbinding of abeta peptides from amyloid fibrils.
    Raman EP; Takeda T; Barsegov V; Klimov DK
    J Mol Biol; 2007 Oct; 373(3):785-800. PubMed ID: 17868685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape.
    Jia Z; Schmit JD; Chen J
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10322-10328. PubMed ID: 32345723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.