These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37934627)

  • 41. Atomistic theory of amyloid fibril nucleation.
    Cabriolu R; Kashchiev D; Auer S
    J Chem Phys; 2010 Dec; 133(22):225101. PubMed ID: 21171698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation.
    John T; Adler J; Elsner C; Petzold J; Krueger M; Martin LL; Huster D; Risselada HJ; Abel B
    J Colloid Interface Sci; 2022 Sep; 622():804-818. PubMed ID: 35569410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dimerization Mechanism of Alzheimer Aβ
    Nguyen PH; Sterpone F; Pouplana R; Derreumaux P; Campanera JM
    J Phys Chem B; 2016 Dec; 120(47):12111-12126. PubMed ID: 27933940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining.
    Dapson RW
    Biotech Histochem; 2018; 93(8):543-556. PubMed ID: 30403893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembly of a peptide with a tandem repeat of the Aβ16-22 sequence linked by a β turn-promoting dipeptide sequence.
    Sivakama Sundari C; Bikshapathy E; Nagaraj R
    Biopolymers; 2015 Nov; 104(6):790-803. PubMed ID: 26473431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation.
    Xie H; Rojas A; Maisuradze GG; Khelashvili G
    ACS Chem Neurosci; 2022 Apr; 13(7):987-1001. PubMed ID: 35258946
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular dynamics simulations of anti-aggregation effect of ibuprofen.
    Chang WE; Takeda T; Raman EP; Klimov DK
    Biophys J; 2010 Jun; 98(11):2662-70. PubMed ID: 20513411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of large Aβ16-22 aggregates at atomic details and potential of mean force associated to peptide unbinding and fragmentation events.
    Iorio A; Timr Š; Chiodo L; Derreumaux P; Sterpone F
    Proteins; 2023 Aug; 91(8):1152-1162. PubMed ID: 37139594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Frustrated peptide chains at the fibril tip control the kinetics of growth of amyloid-β fibrils.
    Xu Y; Knapp K; Le KN; Schafer NP; Safari MS; Davtyan A; Wolynes PG; Vekilov PG
    Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34518234
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations.
    Han W; Schulten K
    J Am Chem Soc; 2014 Sep; 136(35):12450-60. PubMed ID: 25134066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformational entropy limits the transition from nucleation to elongation in amyloid aggregation.
    Phan TM; Schmit JD
    Biophys J; 2022 Aug; 121(15):2931-2939. PubMed ID: 35778843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
    Abelein A; Jarvet J; Barth A; Gräslund A; Danielsson J
    J Am Chem Soc; 2016 Jun; 138(21):6893-902. PubMed ID: 27171340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamics of Seeded Aβ40-Fibril Growth from Atomistic Molecular Dynamics Simulations: Kinetic Trapping and Reduced Water Mobility in the Locking Step.
    Schwierz N; Frost CV; Geissler PL; Zacharias M
    J Am Chem Soc; 2016 Jan; 138(2):527-39. PubMed ID: 26694883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly.
    Doran TM; Anderson EA; Latchney SE; Opanashuk LA; Nilsson BL
    ACS Chem Neurosci; 2012 Mar; 3(3):211-20. PubMed ID: 22860190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR.
    Balbach JJ; Ishii Y; Antzutkin ON; Leapman RD; Rizzo NW; Dyda F; Reed J; Tycko R
    Biochemistry; 2000 Nov; 39(45):13748-59. PubMed ID: 11076514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growth kinetics of amyloid-like fibrils: An integrated atomistic simulation and continuum theory approach.
    Zhang R; Jalali S; Dias CL; Haataja MP
    PNAS Nexus; 2024 Feb; 3(2):pgae045. PubMed ID: 38725528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet.
    Ohnishi S; Koide A; Koide S
    J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing the Conformational Preference to β-Strand during Peptide Self-Assembly.
    Ganesan V; Priya MH
    J Phys Chem B; 2023 Jul; 127(26):5821-5836. PubMed ID: 37364023
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth.
    McLaurin J; Franklin T; Zhang X; Deng J; Fraser PE
    Eur J Biochem; 1999 Dec; 266(3):1101-10. PubMed ID: 10583407
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils.
    Thacker D; Sanagavarapu K; Frohm B; Meisl G; Knowles TPJ; Linse S
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25272-25283. PubMed ID: 33004626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.