These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37934648)

  • 1. The Effects of Exoskeleton Assistance at the Ankle on Sensory Integration During Standing Balance.
    Canete S; Wilson EB; Wright WG; Jacobs DA
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4428-4438. PubMed ID: 37934648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    BayĆ³n C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton.
    Jeong H; Haghighat P; Kantharaju P; Jacobson M; Jeong H; Kim M
    Sci Rep; 2023 Jan; 13(1):1363. PubMed ID: 36693935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a powered ankle-foot orthosis on perturbed standing balance.
    Emmens AR; van Asseldonk EHF; van der Kooij H
    J Neuroeng Rehabil; 2018 Jun; 15(1):50. PubMed ID: 29914505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 11. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of a powered ankle exoskeleton on human stability and balance.
    Gonzalez S; Stegall P; Cain SM; Siu HC; Stirling L
    Appl Ergon; 2022 Sep; 103():103768. PubMed ID: 35461062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle recruitment and coordination with an ankle exoskeleton.
    Steele KM; Jackson RW; Shuman BR; Collins SH
    J Biomech; 2017 Jul; 59():50-58. PubMed ID: 28623037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.
    Hybart RL; Ferris DP
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton.
    Lee D; McLain B; Kang I; Young A
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2870-2879. PubMed ID: 34033531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.