BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37934793)

  • 1. Inferring causal connectivity from pairwise recordings and optogenetics.
    Lepperød ME; Stöber T; Hafting T; Fyhn M; Kording KP
    PLoS Comput Biol; 2023 Nov; 19(11):e1011574. PubMed ID: 37934793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins.
    Linghu C; Chen IW; Tanese D; Zampini V; Shemesh OA
    Methods Mol Biol; 2022; 2501():229-257. PubMed ID: 35857231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions.
    Ryali S; Shih YY; Chen T; Kochalka J; Albaugh D; Fang Z; Supekar K; Lee JH; Menon V
    Neuroimage; 2016 May; 132():398-405. PubMed ID: 26934644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniaturized optogenetic neural implants: a review.
    Fan B; Li W
    Lab Chip; 2015 Oct; 15(19):3838-55. PubMed ID: 26308721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Neural Circuits.
    Rajasethupathy P; Ferenczi E; Deisseroth K
    Cell; 2016 Apr; 165(3):524-34. PubMed ID: 27104976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques.
    Gong X; Mendoza-Halliday D; Ting JT; Kaiser T; Sun X; Bastos AM; Wimmer RD; Guo B; Chen Q; Zhou Y; Pruner M; Wu CW; Park D; Deisseroth K; Barak B; Boyden ES; Miller EK; Halassa MM; Fu Z; Bi G; Desimone R; Feng G
    Neuron; 2020 Jul; 107(1):38-51.e8. PubMed ID: 32353253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation.
    Eriksson D; Schneider A; Thirumalai A; Alyahyay M; de la Crompe B; Sharma K; Ruther P; Diester I
    Nat Commun; 2022 Feb; 13(1):985. PubMed ID: 35190556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing causality for dopamine in neural function and behavior with optogenetics.
    Steinberg EE; Janak PH
    Brain Res; 2013 May; 1511():46-64. PubMed ID: 23031636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution optogenetics in space and time.
    Fernandez-Ruiz A; Oliva A; Chang H
    Trends Neurosci; 2022 Nov; 45(11):854-864. PubMed ID: 36192264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.
    Fang-Yen C; Alkema MJ; Samuel AD
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140212. PubMed ID: 26240427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks.
    Sridharan S; Gajowa MA; Ogando MB; Jagadisan UK; Abdeladim L; Sadahiro M; Bounds HA; Hendricks WD; Turney TS; Tayler I; Gopakumar K; Oldenburg IA; Brohawn SG; Adesnik H
    Neuron; 2022 Apr; 110(7):1139-1155.e6. PubMed ID: 35120626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 16. Inferring neural circuit properties from optogenetic stimulation.
    Avery M; Nassi J; Reynolds J
    PLoS One; 2018; 13(10):e0205386. PubMed ID: 30365490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opto nongenetics inhibition of neuronal firing.
    Ait Ouares K; Beurrier C; Canepari M; Laverne G; Kuczewski N
    Eur J Neurosci; 2019 Jan; 49(1):6-26. PubMed ID: 30387216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing neural codes with two-photon holographic optogenetics.
    Adesnik H; Abdeladim L
    Nat Neurosci; 2021 Oct; 24(10):1356-1366. PubMed ID: 34400843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimally invasive neural stimulation with a novel ultra-sensitive step function opsin: implications and future directions.
    Lawrence A; Chang HHV
    J Neurophysiol; 2020 Nov; 124(5):1312-1314. PubMed ID: 32997585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.
    Lightning A; Bourzeix M; Beurrier C; Kuczewski N
    Eur J Neurosci; 2023 Mar; 57(6):885-899. PubMed ID: 36726326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.