BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37935360)

  • 1. Red edge excitation shift spectroscopy is highly sensitive to tryptophan composition.
    Warrender AK; Pan J; Pudney C; Arcus VL; Kelton W
    J R Soc Interface; 2023 Nov; 20(208):20230337. PubMed ID: 37935360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic insight into protein structure utilizing red edge excitation shift.
    Chattopadhyay A; Haldar S
    Acc Chem Res; 2014 Jan; 47(1):12-9. PubMed ID: 23981188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach.
    Chakraborty H; Chattopadhyay A
    J Fluoresc; 2017 Nov; 27(6):1995-2000. PubMed ID: 28687983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubulin conformation and dynamics: a red edge excitation shift study.
    Guha S; Rawat SS; Chattopadhyay A; Bhattacharyya B
    Biochemistry; 1996 Oct; 35(41):13426-33. PubMed ID: 8873611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide.
    Tory MC; Merrill AR
    Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unusual red-edge excitation and time-dependent Stokes shift in the single tryptophan mutant protein DD-carboxypeptidase from Streptomyces: the role of dynamics and tryptophan rotamers.
    Maglia G; Jonckheer A; De Maeyer M; Frère JM; Engelborghs Y
    Protein Sci; 2008 Feb; 17(2):352-61. PubMed ID: 18096643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring gramicidin conformations in membranes: a fluorescence approach.
    Rawat SS; Kelkar DA; Chattopadhyay A
    Biophys J; 2004 Aug; 87(2):831-43. PubMed ID: 15298892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift.
    Haldar S; Chaudhuri A; Chattopadhyay A
    J Phys Chem B; 2011 May; 115(19):5693-706. PubMed ID: 21428321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel insights in linking solvent relaxation dynamics and protein conformations utilizing red edge excitation shift approach.
    Brahma R; Raghuraman H
    Emerg Top Life Sci; 2021 May; 5(1):89-101. PubMed ID: 33416893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach.
    Chattopadhyay A
    Chem Phys Lipids; 2003 Jan; 122(1-2):3-17. PubMed ID: 12598034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability.
    Kwok A; Camacho IS; Winter S; Knight M; Meade RM; Van der Kamp MW; Turner A; O'Hara J; Mason JM; Jones AR; Arcus VL; Pudney CR
    Front Mol Biosci; 2021; 8():778244. PubMed ID: 34926581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization and dynamics of tryptophan residues in brain spectrin: novel insight into conformational flexibility.
    Mitra M; Chaudhuri A; Patra M; Mukhopadhyay C; Chakrabarti A; Chattopadhyay A
    J Fluoresc; 2015 May; 25(3):707-17. PubMed ID: 25835748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant domain polymorphisms influence monoclonal antibody stability and dynamics.
    Warrender AK; Pan J; Pudney CR; Arcus VL; Kelton W
    Protein Sci; 2023 Mar; 32(3):e4589. PubMed ID: 36759959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of structural transition of the host assembly on dynamics of a membrane-bound tryptophan analogue.
    Arora-Sharawat A; Chattopadhyay A
    Biophys Chem; 2007 Sep; 129(2-3):172-80. PubMed ID: 17590497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorophore environments in membrane-bound probes: a red edge excitation shift study.
    Chattopadhyay A; Mukherjee S
    Biochemistry; 1993 Apr; 32(14):3804-11. PubMed ID: 8466919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
    Chattopadhyay A; Rawat SS; Kelkar DA; Ray S; Chakrabarti A
    Protein Sci; 2003 Nov; 12(11):2389-403. PubMed ID: 14573853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The red edge excitation shift phenomenon can be used to unmask protein structural ensembles: implications for NEMO-ubiquitin interactions.
    Catici DA; Amos HE; Yang Y; van den Elsen JM; Pudney CR
    FEBS J; 2016 Jun; 283(12):2272-84. PubMed ID: 27028374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red-edge excitation fluorescence measurements of several two-tryptophan-containing proteins.
    Wasylewski Z; Kołoczek H; Waśniowska A; Slizowska K
    Eur J Biochem; 1992 May; 206(1):235-42. PubMed ID: 1587274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-Selective Fluorescence of a Model Transmembrane Peptide: Constrained Dynamics of Interfacial Tryptophan Anchors.
    Pal S; Koeppe RE; Chattopadhyay A
    J Fluoresc; 2018 Nov; 28(6):1317-1323. PubMed ID: 30225736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between dynamics, structure and spectral properties of human alpha 1-acid glycoprotein (orosomucoid): a fluorescence approach.
    Albani JR
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Jan; 54A(1):175-83. PubMed ID: 9532772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.