These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 3793551)
1. A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems. Mechling JA; Strohbehn JW Int J Radiat Oncol Biol Phys; 1986 Dec; 12(12):2137-49. PubMed ID: 3793551 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Mechling JA; Strohbehn JW; Ryan TP Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional theoretical SAR and temperature distributions created in brain tissue by 915 and 2450 MHz dipole antenna arrays with varying insertion depths. Mechling JA; Strohbehn JW Int J Hyperthermia; 1992; 8(4):529-42. PubMed ID: 1402132 [TBL] [Abstract][Full Text] [Related]
4. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models. Mechling JA; Strohbehn JW; France LJ Int J Hyperthermia; 1991; 7(3):465-83. PubMed ID: 1919142 [TBL] [Abstract][Full Text] [Related]
5. Effect of interseed spacing, tissue perfusion, thermoseed temperatures and catheters in ferromagnetic hyperthermia: results from simulations using finite element models of thermoseeds and catheters. Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR IEEE Trans Biomed Eng; 1994 Oct; 41(10):975-85. PubMed ID: 7959805 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. Furse CM; Iskander MF IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198 [TBL] [Abstract][Full Text] [Related]
7. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation. Huang HW; Shih TC; Liauh CT Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157 [TBL] [Abstract][Full Text] [Related]
8. Calculations of heating patterns of an array of microwave interstitial antennas. Cherry PC; Iskander MF IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443 [TBL] [Abstract][Full Text] [Related]
9. Temperature distributions from interstitial rf electrode hyperthermia systems: theoretical predictions. Strohbehn JW Int J Radiat Oncol Biol Phys; 1983 Nov; 9(11):1655-67. PubMed ID: 6643161 [TBL] [Abstract][Full Text] [Related]
10. Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy. Babbs CF; Fearnot NE; Marchosky JA; Moran CJ; Jones JT; Plantenga TD IEEE Trans Biomed Eng; 1990 Jul; 37(7):662-72. PubMed ID: 2394454 [TBL] [Abstract][Full Text] [Related]
11. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques. van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627 [TBL] [Abstract][Full Text] [Related]
12. Theoretical temperature distributions produced by an annular phased array-type system in CT-based patient models. Paulsen KD; Strohbehn JW; Lynch DR Radiat Res; 1984 Dec; 100(3):536-52. PubMed ID: 6505143 [TBL] [Abstract][Full Text] [Related]
13. Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas. Zhang Y; Joines WT; Oleson JR IEEE Trans Biomed Eng; 1991 Jan; 38(1):92-7. PubMed ID: 2026438 [TBL] [Abstract][Full Text] [Related]
14. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354 [TBL] [Abstract][Full Text] [Related]
15. The effects of large blood vessels on temperature distributions during simulated hyperthermia. Chen ZP; Roemer RB J Biomech Eng; 1992 Nov; 114(4):473-81. PubMed ID: 1487899 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of microwave interstitial antennas in the phantom with varying cross-section. Leybovich LB; Kurup RG Int J Radiat Oncol Biol Phys; 1993 Jan; 25(1):105-12. PubMed ID: 8416865 [TBL] [Abstract][Full Text] [Related]
17. Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment. Eppert V; Trembly BS; Richter HJ IEEE Trans Biomed Eng; 1991 May; 38(5):450-60. PubMed ID: 1874527 [TBL] [Abstract][Full Text] [Related]
18. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Rossetto F; Diederich CJ; Stauffer PR Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697 [TBL] [Abstract][Full Text] [Related]
19. The use of generalized cell-survival data in a physiologically based objective function for hyperthermia treatment planning: a sensitivity study with a simple tissue model implanted with an array of ferromagnetic thermoseeds. Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR Int J Radiat Oncol Biol Phys; 1994 Nov; 30(4):929-43. PubMed ID: 7960996 [TBL] [Abstract][Full Text] [Related]
20. Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional, axi-asymmetric, inhomogeneous patient model. Paulsen KD; Strohbehn JW; Hill SC; Lynch DR; Kennedy FE Int J Radiat Oncol Biol Phys; 1984 Jul; 10(7):1095-107. PubMed ID: 6746351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]