These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37935676)

  • 21. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA in formation and regulation of transcriptional condensates.
    Sharp PA; Chakraborty AK; Henninger JE; Young RA
    RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner.
    McGregor LA; Deckard CE; Smolen JA; Porter GM; Sczepanski JT
    J Biol Chem; 2023 Jul; 299(7):104907. PubMed ID: 37307918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function.
    Kamata K; Goswami G; Kashio S; Urano T; Nakagawa R; Uchida H; Oki M
    J Biochem; 2014 Mar; 155(3):159-71. PubMed ID: 24307402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
    Li W; Jiang H
    J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleated transcriptional condensates amplify gene expression.
    Wei MT; Chang YC; Shimobayashi SF; Shin Y; Strom AR; Brangwynne CP
    Nat Cell Biol; 2020 Oct; 22(10):1187-1196. PubMed ID: 32929202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A model for organization and regulation of nuclear condensates by gene activity.
    Schede HH; Natarajan P; Chakraborty AK; Shrinivas K
    Nat Commun; 2023 Jul; 14(1):4152. PubMed ID: 37438363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase separation in transcription factor dynamics and chromatin organization.
    Wagh K; Garcia DA; Upadhyaya A
    Curr Opin Struct Biol; 2021 Dec; 71():148-155. PubMed ID: 34303933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation.
    Shao Y; Shu X; Lu Y; Zhu W; Li R; Fu H; Li C; Sun W; Li Z; Zhang Y; Cao X; Ye X; Ajiboye E; Zhao B; Zhang L; Wu H; Feng XH; Yang B; Lu H
    Nat Cell Biol; 2024 Jan; 26(1):86-99. PubMed ID: 38172614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.
    Foran G; Hallam RD; Megaly M; Turgambayeva A; Antfolk D; Li Y; Luca VC; Necakov A
    bioRxiv; 2024 Aug; ():. PubMed ID: 39131356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular features driving condensate formation and gene expression by the BRD4-NUT fusion oncoprotein are overlapping but distinct.
    Kosno M; Currie SL; Kumar A; Xing C; Rosen MK
    Sci Rep; 2023 Jul; 13(1):11907. PubMed ID: 37488172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SGF29 and Sry pathway in hepatocarcinogenesis.
    Kurabe N; Murakami S; Tashiro F
    World J Biol Chem; 2015 Aug; 6(3):139-47. PubMed ID: 26322172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress-induced nuclear condensation of NELF drives transcriptional downregulation.
    Rawat P; Boehning M; Hummel B; Aprile-Garcia F; Pandit AS; Eisenhardt N; Khavaran A; Niskanen E; Vos SM; Palvimo JJ; Pichler A; Cramer P; Sawarkar R
    Mol Cell; 2021 Mar; 81(5):1013-1026.e11. PubMed ID: 33548202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutrient status regulates MED19a phase separation for ORESARA1-dependent senescence.
    Cheng SLH; Wu HW; Xu H; Singh RM; Yao T; Jang IC; Chua NH
    New Phytol; 2022 Dec; 236(5):1779-1795. PubMed ID: 36093737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD.
    Ostendorp A; Ostendorp S; Zhou Y; Chaudron Z; Wolffram L; Rombi K; von Pein L; Falke S; Jeffries CM; Svergun DI; Betzel C; Morris RJ; Kragler F; Kehr J
    J Biol Chem; 2022 Dec; 298(12):102631. PubMed ID: 36273579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains.
    Davis RB; Kaur T; Moosa MM; Banerjee PR
    Protein Sci; 2021 Jul; 30(7):1454-1466. PubMed ID: 34018649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In diverse conditions, intrinsic chromatin condensates have liquid-like material properties.
    Gibson BA; Blaukopf C; Lou T; Chen L; Doolittle LK; Finkelstein I; Narlikar GJ; Gerlich DW; Rosen MK
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2218085120. PubMed ID: 37094140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.