BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37935723)

  • 1. Gradient porous structures of mycelium: a quantitative structure-mechanical property analysis.
    Olivero E; Gawronska E; Manimuda P; Jivani D; Chaggan FZ; Corey Z; de Almeida TS; Kaplan-Bie J; McIntyre G; Wodo O; Nalam PC
    Sci Rep; 2023 Nov; 13(1):19285. PubMed ID: 37935723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties.
    Alberich-Bayarri A; Moratal D; Ivirico JL; Rodríguez Hernández JC; Vallés-Lluch A; Martí-Bonmatí L; Estellés JM; Mano JF; Pradas MM; Ribelles JL; Salmerón-Sánchez M
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):191-202. PubMed ID: 19425071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and mechanics of fungal mycelium.
    Islam MR; Tudryn G; Bucinell R; Schadler L; Picu RC
    Sci Rep; 2017 Oct; 7(1):13070. PubMed ID: 29026133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible porous titanium scaffolds produced using a novel space holder technique.
    Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of porous EH scaffolds and EH-PEG bilayers.
    Falco EE; Coates EE; Li E; Roth JS; Fisher JP
    J Biomed Mater Res A; 2011 Jun; 97(3):264-71. PubMed ID: 21442727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.
    Singh S; Vashisth P; Shrivastav A; Bhatnagar N
    J Mech Behav Biomed Mater; 2019 Jun; 94():54-62. PubMed ID: 30856480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing of gradient scaffolds and their applications in tissue regeneration.
    Pattnaik A; Sanket AS; Pradhan S; Sahoo R; Das S; Pany S; Douglas TEL; Dandela R; Liu Q; Rajadas J; Pati S; De Smedt SC; Braeckmans K; Samal SK
    Biomaterials; 2023 May; 296():122078. PubMed ID: 36921442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.
    Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M
    J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties.
    Xu Y; Xia D; Han J; Yuan S; Lin H; Zhao C
    Carbohydr Polym; 2017 Dec; 177():210-216. PubMed ID: 28962760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.
    Zhang X; Li XW; Li JG; Sun XD
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
    Sempertegui ND; Narkhede AA; Thomas V; Rao SS
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering.
    Chen Y; Frith JE; Dehghan-Manshadi A; Attar H; Kent D; Soro NDM; Bermingham MJ; Dargusch MS
    J Mech Behav Biomed Mater; 2017 Nov; 75():169-174. PubMed ID: 28734258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.