These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37935739)

  • 1. Simulation of bi-directional pedestrian flow in corridor based on direction fuzzy visual field.
    Li S; Li Q; Zhong G; Zhang Y
    Sci Rep; 2023 Nov; 13(1):19261. PubMed ID: 37935739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical investigation on safety constraints of merging pedestrian crowd through macroscopic and microscopic analysis.
    Shi X; Ye Z; Shiwakoti N; Tang D; Wang C; Wang W
    Accid Anal Prev; 2016 Oct; 95(Pt B):405-416. PubMed ID: 26519346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing factors causing deadlock events of bi-directional pedestrian flow when moving on stairs using a personal space model.
    Liu M; Lu G; Yoshinao O
    Sci Rep; 2024 May; 14(1):10847. PubMed ID: 38735965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bidirectional pedestrian macroscopic speed model construction based on pedestrian microscopic simulation experiments.
    Gao X; Zhang H; Qi H; He B
    PLoS One; 2024; 19(10):e0311538. PubMed ID: 39374208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling crowd dynamics through coarse-grained data analysis.
    Motsch S; Moussaïd M; Guillot EG; Moreau M; Pettré J; Theraulaz G; Appert-Rolland C; Degond P
    Math Biosci Eng; 2018 Dec; 15(6):1271-1290. PubMed ID: 30418786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating uni- and bi-directional pedestrian movement on stairs by considering specifications of personal space.
    Liu MW; Wang SM; Oeda Y; Sumi TN
    Accid Anal Prev; 2019 Jan; 122():350-364. PubMed ID: 29174855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the impact of speed dispersion on subway corridor flow.
    Qiao J; Sun L; Liu X; Rong J
    Appl Ergon; 2017 Nov; 65():362-368. PubMed ID: 28802457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An attempt to distinguish physical and socio-psychological influences on pedestrian bottleneck.
    Rzezonka J; Chraibi M; Seyfried A; Hein B; Schadschneider A
    R Soc Open Sci; 2022 Jun; 9(6):211822. PubMed ID: 35706660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Voronoi diagram based direction choices using uni- and bi-directional trajectory data.
    Xiao Y; Chraibi M; Qu Y; Tordeux A; Gao Z
    Phys Rev E; 2018 May; 97(5-1):052127. PubMed ID: 29906901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical analysis of the lane formation process in bidirectional pedestrian flow.
    Feliciani C; Nishinari K
    Phys Rev E; 2016 Sep; 94(3-1):032304. PubMed ID: 27739694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular automaton simulation of pedestrian counter flow with different walk velocities.
    Weng WG; Chen T; Yuan HY; Fan WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036102. PubMed ID: 17025703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The analysis of pedestrian flow in the smart city by improved DWA with robot assistance.
    Hu Y; Long H; Chen M
    Sci Rep; 2024 May; 14(1):11456. PubMed ID: 38769113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the direction and speed strategies on pedestrian dynamics.
    Hu X; Chen T; Deng K; Wang G
    Chaos; 2022 Jun; 32(6):063140. PubMed ID: 35778137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microscopic simulation model for pedestrian-pedestrian and pedestrian-vehicle interactions at crosswalks.
    Liu M; Zeng W; Chen P; Wu X
    PLoS One; 2017; 12(7):e0180992. PubMed ID: 28715429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedestrian dynamics in single-file movement of crowd with different age compositions.
    Cao S; Zhang J; Salden D; Ma J; Shi C; Zhang R
    Phys Rev E; 2016 Jul; 94(1-1):012312. PubMed ID: 27575153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating pedestrian trajectories consistent with the fundamental diagram based on physiological and psychological factors.
    Narang S; Best A; Curtis S; Manocha D
    PLoS One; 2015; 10(4):e0117856. PubMed ID: 25875932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Associations of Street Network Design, Streetscape Attributes and Land-Use Characteristics on Pedestrian Flows in Peripheral Neighbourhoods.
    Ozbil A; Gurleyen T; Yesiltepe D; Zunbuloglu E
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31137690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Safety In Numbers effect for pedestrians at urban intersections.
    Murphy B; Levinson DM; Owen A
    Accid Anal Prev; 2017 Sep; 106():181-190. PubMed ID: 28623749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How people with disabilities influence crowd dynamics of pedestrian movement through bottlenecks.
    Geoerg P; Schumann J; Boltes M; Kinateder M
    Sci Rep; 2022 Aug; 12(1):14273. PubMed ID: 35995966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of counterflow pedestrian dynamics using spheropolygons.
    Alonso-Marroquín F; Busch J; Chiew C; Lozano C; Ramírez-Gómez Á
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063305. PubMed ID: 25615220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.