These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37936078)
41. Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection. Hurley AM; Lopez-Villalobos N; McParland S; Lewis E; Kennedy E; O'Donovan M; Burke JL; Berry DP J Dairy Sci; 2018 Feb; 101(2):1267-1280. PubMed ID: 29174146 [TBL] [Abstract][Full Text] [Related]
42. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Arthur PF; Archer JA; Johnston DJ; Herd RM; Richardson EC; Parnell PF J Anim Sci; 2001 Nov; 79(11):2805-11. PubMed ID: 11768108 [TBL] [Abstract][Full Text] [Related]
43. Genetic analysis of protein efficiency and its association with performance and meat quality traits under a protein-restricted diet. Ewaoluwagbemiga EO; Bee G; Kasper C Genet Sel Evol; 2023 Jun; 55(1):35. PubMed ID: 37268880 [TBL] [Abstract][Full Text] [Related]
44. Genetic relationships of feed efficiency and growth traits with carcass traits in Japanese Shorthorn cattle. Shinoda C; Yasuda J; Yamagata K; Suzuki K; Satoh M; Roh S; Uemoto Y Anim Sci J; 2022; 93(1):e13691. PubMed ID: 35137482 [TBL] [Abstract][Full Text] [Related]
45. Effects of correcting missing daily feed intake values on the genetic parameters and estimated breeding values for feeding traits in pigs. Ito T; Fukawa K; Kamikawa M; Nikaidou S; Taniguchi M; Arakawa A; Tanaka G; Mikawa S; Furukawa T; Hirose K Anim Sci J; 2018 Jan; 89(1):12-20. PubMed ID: 28856828 [TBL] [Abstract][Full Text] [Related]
46. Bayesian estimation of genetic variance and response to selection on linear or ratio traits of feed efficiency in dairy cattle. Islam MS; Jensen J; Løvendahl P; Karlskov-Mortensen P; Shirali M J Dairy Sci; 2020 Oct; 103(10):9150-9166. PubMed ID: 32713703 [TBL] [Abstract][Full Text] [Related]
47. Estimation of heritability of feeding behaviour traits and their correlation with production traits in Finnish Yorkshire pigs. Kavlak AT; Uimari P J Anim Breed Genet; 2019 Nov; 136(6):484-494. PubMed ID: 31172608 [TBL] [Abstract][Full Text] [Related]
49. Selection for feed efficiency using the social effects animal model in growing Duroc pigs: evaluation by simulation. Herrera-Cáceres W; Sánchez JP Genet Sel Evol; 2020 Sep; 52(1):53. PubMed ID: 32993480 [TBL] [Abstract][Full Text] [Related]
50. Impact of a high-fibre diet on genetic parameters of production traits in growing pigs. Déru V; Bouquet A; Hassenfratz C; Blanchet B; Carillier-Jacquin C; Gilbert H Animal; 2020 Nov; 14(11):2236-2245. PubMed ID: 32618545 [TBL] [Abstract][Full Text] [Related]
51. Feed intake and feeding behavior traits for gestating sows recorded using electronic sow feeders. Vargovic L; Hermesch S; Athorn RZ; Bunter KL J Anim Sci; 2021 Jan; 99(1):. PubMed ID: 33313717 [TBL] [Abstract][Full Text] [Related]
52. Genetic parameters for measures of the efficiency of gain of boars and the genetic relationships with its component traits in Duroc pigs. Hoque MA; Kadowaki H; Shibata T; Oikawa T; Suzuki K J Anim Sci; 2007 Aug; 85(8):1873-9. PubMed ID: 17431052 [TBL] [Abstract][Full Text] [Related]
53. A genomewide association study of feed efficiency and feeding behaviors at two fattening stages in a White Duroc × Erhualian F population. Guo YM; Zhang ZY; Ma JW; Ai HS; Ren J; Huang LS J Anim Sci; 2015 Apr; 93(4):1481-9. PubMed ID: 26020169 [TBL] [Abstract][Full Text] [Related]
54. Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in Yorkshire swine. Young JM; Cai W; Dekkers JC J Anim Sci; 2011 Mar; 89(3):639-47. PubMed ID: 21036935 [TBL] [Abstract][Full Text] [Related]
55. Bayesian estimation of direct and correlated responses to selection on linear or ratio expressions of feed efficiency in pigs. Shirali M; Varley PF; Jensen J Genet Sel Evol; 2018 Jun; 50(1):33. PubMed ID: 29925306 [TBL] [Abstract][Full Text] [Related]
56. Impact of genomic preselection on subsequent ssGBLUP evaluation of preselected animals for scarcely recorded feed intake in pigs. Jibrila I; Ten Napel J; Vandenplas J; Bergsma R; Veerkamp RF; Calus MPL J Anim Breed Genet; 2023 May; 140(3):253-263. PubMed ID: 36637041 [TBL] [Abstract][Full Text] [Related]
57. Longitudinal analysis of residual feed intake and BW in mink using random regression with heterogeneous residual variance. Shirali M; Nielsen VH; Møller SH; Jensen J Animal; 2015 Oct; 9(10):1597-604. PubMed ID: 26051560 [TBL] [Abstract][Full Text] [Related]
58. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. Do DN; Ostersen T; Strathe AB; Mark T; Jensen J; Kadarmideen HN BMC Genet; 2014 Feb; 15():27. PubMed ID: 24533460 [TBL] [Abstract][Full Text] [Related]
59. Genetic parameters and genomic prediction for feed intake recorded at the group and individual level in different production systems for growing pigs. Gao H; Su G; Jensen J; Madsen P; Christensen OF; Ask B; Poulsen BG; Ostersen T; Nielsen B Genet Sel Evol; 2021 Apr; 53(1):33. PubMed ID: 33832423 [TBL] [Abstract][Full Text] [Related]
60. The economic and environmental value of genetic improvements in fattening pigs: An integrated dynamic model approach. Niemi JK; Sevón-Aimonen ML; Stygar AH; Partanen K J Anim Sci; 2015 Aug; 93(8):4161-71. PubMed ID: 26440196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]