BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37936314)

  • 1. Thermoelectric Generator Through Dual-Direction Thermal Regulation by Thermal Diodes for Waste Heat Harvesting.
    Li T; Jiang W; Tong Y; Jiang W; Yin L; Chen B; Shi Y; Zhang L; Liu H
    Small; 2024 Mar; 20(11):e2304308. PubMed ID: 37936314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Thermoelectric Generators for Field Deployments.
    Kishore RA; Nozariasbmarz A; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Thermoelectric Fabric Structure with Switched Thermal Gradient Direction toward Wearable In-Plane Thermoelectric Generators.
    Ding D; Wu Q; Li Q; Chen Y; Zhi C; Wei X; Wang J
    Small; 2024 May; 20(22):e2306830. PubMed ID: 38126556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-long air-stability of n-type carbon nanotube films with low thermal conductivity and all-carbon thermoelectric generators.
    Amma Y; Miura K; Nagata S; Nishi T; Miyake S; Miyazaki K; Takashiri M
    Sci Rep; 2022 Dec; 12(1):21603. PubMed ID: 36517530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting.
    Fan W; Shen Z; Zhang Q; Liu F; Fu C; Zhu T; Zhao X
    ACS Appl Mater Interfaces; 2022 May; 14(18):21224-21231. PubMed ID: 35482595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed Bi
    Cui GP; Feng CP; Xu SC; Sun KY; Ji JC; Hou L; Lan HB; Shang HJ; Ding FZ
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38940538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation.
    Zhu S; Peng Y; Gao J; Miao L; Lai H; Liu C; Zhang J; Zhang Y; Zhou S; Koumoto K; Zhu T
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1045-1055. PubMed ID: 34965726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable Thermoelectric Generators Metallized with Liquid Alloy.
    Jeong SH; Cruz FJ; Chen S; Gravier L; Liu J; Wu Z; Hjort K; Zhang SL; Zhang ZB
    ACS Appl Mater Interfaces; 2017 May; 9(18):15791-15797. PubMed ID: 28453282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Thermoelectric Generators: From Application to Hybridization.
    Liu Z; Tian B; Li Y; Guo Z; Zhang Z; Luo Z; Zhao L; Lin Q; Lee C; Jiang Z
    Small; 2023 Nov; 19(48):e2304599. PubMed ID: 37544920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites.
    Zadan M; Malakooti MH; Majidi C
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17921-17928. PubMed ID: 32208638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques.
    Kishore RA; Sanghadasa M; Priya S
    Sci Rep; 2017 Dec; 7(1):16746. PubMed ID: 29196715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films.
    Ozawa T; Murata M; Suemasu T; Toko K
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics.
    Fan W; An Z; Liu F; Gao Z; Zhang M; Fu C; Zhu T; Liu Q; Zhao X
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206397. PubMed ID: 36799534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Compact and Efficient Boost Converter in a 28 nm CMOS with 90 mV Self-Startup and Maximum Output Voltage Tracking ZCS for Thermoelectric Energy Harvesting.
    Ali M; Chandrarathna SC; Moon SY; Jana MS; Shafique A; Qraiqea H; Lee JW
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators.
    Li W; Nozariasbmarz A; Kishore RA; Kang HB; Dettor C; Zhu H; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53935-53944. PubMed ID: 34698486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.
    Zhan T; Yamato R; Hashimoto S; Tomita M; Oba S; Himeda Y; Mesaki K; Takezawa H; Yokogawa R; Xu Y; Matsukawa T; Ogura A; Kamakura Y; Watanabe T
    Sci Technol Adv Mater; 2018; 19(1):443-453. PubMed ID: 29868148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives.
    Tabaie Z; Omidvar A
    Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Assessment of Thermoelectric Generators with Application on Aerodynamic Heat Recovery.
    Jia X; Fan S; Zhang Z; Wang H
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Skin-Worn Thermoelectric Generators for Body Heat Energy Harvesting to Power Wearable Devices.
    Smith RI; Johnston ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7158-7161. PubMed ID: 34892751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of MEMS Process Compatible (Bi,Sb)
    Bhatnagar P; Vashaee D
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.