These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37936615)

  • 1. Exploration of the common pathogenic link between COVID-19 and diabetic foot ulcers: An in silico approach.
    Cai X; Yang R; Shi W; Cai Y; Ma Z
    Health Sci Rep; 2023 Nov; 6(11):e1686. PubMed ID: 37936615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-1B can serve as a healing process and is a critical regulator of diabetic foot ulcer.
    Gan MS; Yang B; Fang DL; Wu BL
    Ann Transl Med; 2022 Feb; 10(4):179. PubMed ID: 35280410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel diabetic foot ulcer diagnostic model: identification and analysis of genes related to glutamine metabolism and immune infiltration.
    Shi H; Yuan X; Yang X; Huang R; Fan W; Liu G
    BMC Genomics; 2024 Jan; 25(1):125. PubMed ID: 38287255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining the potential therapeutic targets for COVID-19 infection in patients with severe burn injuries via bioinformatics analysis.
    Cai X; Deng J; Shi W; Cai Y; Ma Z
    Int Wound J; 2023 Sep; 20(7):2742-2752. PubMed ID: 36924127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth differentiation factor 10 induces angiogenesis to promote wound healing in rats with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway.
    Zhao Q; Xu J; Han X; Zhang Z; Qu J; Cheng Z
    Front Endocrinol (Lausanne); 2022; 13():1013018. PubMed ID: 36714584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a shared gene signature and biological mechanism between diabetic foot ulcers and cutaneous lupus erythemnatosus by transcriptomic analysis.
    Wu S; Wang Y; Duan J; Teng Y; Wang D; Qi F
    Front Physiol; 2024; 15():1297810. PubMed ID: 38434138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics analysis of differentially expressed genes in diabetic foot ulcer and preliminary experimental verification.
    Miao F; Li X; Wang C; Yuan H; Wu Z
    Ann Transl Med; 2023 Jan; 11(2):89. PubMed ID: 36819522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bioinformatics Analysis of Hub Genes of Diabetic Foot Ulcer and Their Biofunctions].
    Xu F; Rui SL; Luo PQ; Chen Y; Ma Y; Deng WQ
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2022 Nov; 53(6):961-968. PubMed ID: 36443035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of angiogenesis-related genes in diabetic foot ulcer using machine learning algorithms.
    Wang X; Meng L; Zhang J; Zou L; Jia Z; Han X; Zhao L; Song M; Zhang Z; Zong J; Wang S; Lu M
    Heliyon; 2023 Dec; 9(12):e23003. PubMed ID: 38076120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-expression network analysis revealing the key lncRNAs in diabetic foot ulcers.
    Yu P; Guo J; Li J; Chen W; Zhao T
    Arch Med Sci; 2019 Sep; 15(5):1123-1132. PubMed ID: 31572456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring shared therapeutic targets in diabetic cardiomyopathy and diabetic foot ulcers through bioinformatics analysis.
    Wu H; Yang Z; Wang J; Bu Y; Wang Y; Xu K; Li J; Yan C; Liu D; Han Y
    Sci Rep; 2024 Jan; 14(1):230. PubMed ID: 38168477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the pathogenesis of osteomyelitis accompanied by diabetic foot ulcers using microarray data analysis.
    Fan P; Ye H; Zhu C; Xie H
    Medicine (Baltimore); 2023 Oct; 102(43):e33962. PubMed ID: 37904457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of foot ulcer tissue reveals novel potential therapeutic targets of wound healing in diabetic foot ulcers.
    Wang Y; Pi Y; Hu L; Peng Z; Hu H; Zhao J; Zhou Y; Wang D
    Comput Biol Med; 2023 Jun; 159():106858. PubMed ID: 37087778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing Immune Cell Infiltration and Copper Metabolism in Diabetic Foot Ulcers.
    Yi WJ; Yuan Y; Bao Q; Zhao Z; Ding HS; Song J
    J Inflamm Res; 2024; 17():3143-3157. PubMed ID: 38774446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMOX1 as a therapeutic target associated with diabetic foot ulcers based on single-cell analysis and machine learning.
    Chen Y; Zhang Y; Jiang M; Ma H; Cai Y
    Int Wound J; 2024 Mar; 21(3):e14815. PubMed ID: 38468410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidermal growth factor effect on lipopolysaccharide-induced inflammation in fibroblasts derived from diabetic foot ulcer.
    Mendoza-Marí Y; García-Ojalvo A; Fernández-Mayola M; Rodríguez-Rodríguez N; Martinez-Jimenez I; Berlanga-Acosta J
    Scars Burn Heal; 2022; 8():20595131211067380. PubMed ID: 35198238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of potential circRNAs and circRNA-miRNA-mRNA regulatory network in the development of diabetic foot ulcers by integrated bioinformatics analysis.
    Tian M; Dong J; Yuan B; Jia H
    Int Wound J; 2021 Jun; 18(3):323-331. PubMed ID: 33314661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Construction and Analysis of Infiltrating Immune Cell and ceRNA Networks in Diabetic Foot Ulcer.
    Zeng L; Zhang P; Fang Z; Liu D; Li H; Qu X; Chu S; Zhao H; Liu X; Lee M
    Front Endocrinol (Lausanne); 2022; 13():836152. PubMed ID: 35909542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analysis of circRNA-miRNA-mRNA regulatory network identifies potential diagnostic biomarkers in diabetic foot ulcer.
    Liao S; Lin X; Mo C
    Noncoding RNA Res; 2020 Sep; 5(3):116-124. PubMed ID: 32913938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data mining reveal the association between diabetic foot ulcer and peripheral artery disease.
    Zou J; Zhang W; Chen X; Su W; Yu D
    Front Public Health; 2022; 10():963426. PubMed ID: 36062083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.