These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3793727)

  • 21. Functional characterization of anion transport system isolated from human erythrocyte membranes.
    Wolosin JM; Ginsburg H; Cabantchik ZI
    J Biol Chem; 1977 Apr; 252(7):2419-27. PubMed ID: 14965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy.
    Sarpel G; Lubansky HJ; Danon MJ; Omachi A
    Arch Neurol; 1981 May; 38(5):271-4. PubMed ID: 7224909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes.
    Summers JS; Hoogstraten CG; Britt RD; Base K; Shaw BR; Ribeiro AA; Crumbliss AL
    Inorg Chem; 2001 Dec; 40(26):6547-54. PubMed ID: 11735462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dehydration and delayed proton equilibria of red blood cells suspended in isosmotic phosphate buffers. Implications for studies of sickled cells.
    Bookchin RM; Lew DJ; Balazs T; Ueda Y; Lew VL
    J Lab Clin Med; 1984 Dec; 104(6):855-66. PubMed ID: 6094692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The regulation of intracellular pH studied by 31P- and 1H-NMR spectroscopy in superfused guinea-pig cerebral cortex slices.
    Brooks KJ; Bachelard HS
    Neurochem Int; 1992 Oct; 21(3):375-9. PubMed ID: 1303163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Difluorophosphate as a 19F NMR probe of erythrocyte membrane potential.
    Xu AS; Kuchel PW
    Eur Biophys J; 1991; 19(6):327-34. PubMed ID: 1915159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.
    Becker BF; Duhm J
    J Physiol; 1978 Sep; 282():149-68. PubMed ID: 31458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Erythrocyte bisulfite transport.
    Labotka RJ; Galanter W; Misiewicz VM
    Biochim Biophys Acta; 1989 Jun; 981(2):358-62. PubMed ID: 2730912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible and irreversible inhibition of phosphate transport in human erythrocytes by a membrane impermeant carbodiimide.
    Craik JD; Reithmeier RA
    J Biol Chem; 1985 Feb; 260(4):2404-8. PubMed ID: 2982816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions.
    Schnell KF; Besl E; von der Mosel R
    J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imidazol-1-ylalkanoic acids as extrinsic 1H NMR probes for the determination of intracellular pH, extracellular pH and cell volume.
    Gil S; Zaderenzo P; Cruz F; Cerdán S; Ballesteros P
    Bioorg Med Chem; 1994 May; 2(5):305-14. PubMed ID: 7922141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
    Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I
    J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular pH in stored erythrocytes. Refinement and further characterisation of the 31P-NMR methylphosphonate procedure.
    Stewart IM; Chapman BE; Kirk K; Kuchel PW; Lovric VA; Raftos JE
    Biochim Biophys Acta; 1986 Jan; 885(1):23-33. PubMed ID: 3942793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes.
    Jennings ML
    J Gen Physiol; 1982 Feb; 79(2):169-85. PubMed ID: 6276495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds.
    Kirk K; Kuchel PW
    Biochemistry; 1988 Nov; 27(24):8803-10. PubMed ID: 3242610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism.
    Shoemaker DG; Bender CA; Gunn RB
    J Gen Physiol; 1988 Oct; 92(4):449-74. PubMed ID: 3204363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carboxyl methylation of human erythrocyte band 3 in intact cells. Relation to anion transport activity.
    Lou LL; Clarke S
    Biochem J; 1986 Apr; 235(1):183-7. PubMed ID: 3741378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH dependence of phosphate transport across the red blood cell membrane after modification by dansyl chloride.
    Berghout A; Raida M; Romano L; Passow H
    Biochim Biophys Acta; 1985 May; 815(2):281-6. PubMed ID: 3995030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells.
    Timmer RT; Gunn RB
    J Gen Physiol; 2000 Sep; 116(3):363-78. PubMed ID: 10962014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.