BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 37937372)

  • 1. Top-Down Proteomics and the Challenges of True Proteoform Characterization.
    Po A; Eyers CE
    J Proteome Res; 2023 Dec; 22(12):3663-3675. PubMed ID: 37937372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Proteoforms with Unknown Post-translational Modifications Using the MIScore.
    Kou Q; Zhu B; Wu S; Ansong C; Tolić N; Paša-Tolić L; Liu X
    J Proteome Res; 2016 Aug; 15(8):2422-32. PubMed ID: 27291504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding Proteoform Identifications in Top-Down Proteomic Analyses by Constructing Proteoform Families.
    Schaffer LV; Shortreed MR; Cesnik AJ; Frey BL; Solntsev SK; Scalf M; Smith LM
    Anal Chem; 2018 Jan; 90(2):1325-1333. PubMed ID: 29227670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data.
    Schaffer LV; Millikin RJ; Shortreed MR; Scalf M; Smith LM
    J Proteome Res; 2020 Aug; 19(8):3510-3517. PubMed ID: 32584579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine Counting via Isotopic Chemical Labeling for Intact Mass Proteoform Identifications in Tissue.
    Pavek JG; Frey BL; Frost DC; Gu TJ; Li L; Smith LM
    Anal Chem; 2023 Oct; 95(41):15245-15253. PubMed ID: 37791746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography.
    Yu D; Wang Z; Cupp-Sutton KA; Liu X; Wu S
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2502-2513. PubMed ID: 31755044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Human Proteoform Families Using Intact-Mass and Top-Down Proteomics with a Multi-Protease Global Post-Translational Modification Discovery Database.
    Dai Y; Buxton KE; Schaffer LV; Miller RM; Millikin RJ; Scalf M; Frey BL; Shortreed MR; Smith LM
    J Proteome Res; 2019 Oct; 18(10):3671-3680. PubMed ID: 31479276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Corynebacterium glutamicum proteoforms through top-down proteomics.
    Melo RM; de Souza JMF; Williams TCR; Fontes W; de Sousa MV; Ricart CAO; do Vale LHF
    Sci Rep; 2023 Feb; 13(1):2602. PubMed ID: 36788287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteoform Analysis and Construction of Proteoform Families in Proteoform Suite.
    Schaffer LV; Shortreed MR; Smith LM
    Methods Mol Biol; 2022; 2500():67-81. PubMed ID: 35657588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms.
    Schaffer LV; Tucholski T; Shortreed MR; Ge Y; Smith LM
    Anal Chem; 2019 Sep; 91(17):10937-10942. PubMed ID: 31393705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes.
    Wang Q; Sun L; Lundquist PK
    Proteomics; 2023 Feb; 23(3-4):e2100377. PubMed ID: 36070201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Proteoform Post-Translational Modifications by Top-Down and Bottom-Up Mass Spectrometry in Conjunction with Annotations.
    Chen W; Ding Z; Zang Y; Liu X
    J Proteome Res; 2023 Oct; 22(10):3178-3189. PubMed ID: 37728997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary Zone Electrophoresis-Tandem Mass Spectrometry with Activated Ion Electron Transfer Dissociation for Large-scale Top-down Proteomics.
    McCool EN; Lodge JM; Basharat AR; Liu X; Coon JJ; Sun L
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2470-2479. PubMed ID: 31073891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Evaluation of Protein Sequence Filtering Algorithms for Proteoform Identification Using Top-Down Mass Spectrometry.
    Kou Q; Wu S; Liu X
    Proteomics; 2018 Feb; 18(3-4):. PubMed ID: 29327814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Quantification of Proteoforms by Mass Spectrometry.
    Schaffer LV; Millikin RJ; Miller RM; Anderson LC; Fellers RT; Ge Y; Kelleher NL; LeDuc RD; Liu X; Payne SH; Sun L; Thomas PM; Tucholski T; Wang Z; Wu S; Wu Z; Yu D; Shortreed MR; Smith LM
    Proteomics; 2019 May; 19(10):e1800361. PubMed ID: 31050378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Quantification of Murine Mitochondrial Proteoforms Using an Integrated Top-Down and Intact-Mass Strategy.
    Schaffer LV; Rensvold JW; Shortreed MR; Cesnik AJ; Jochem A; Scalf M; Frey BL; Pagliarini DJ; Smith LM
    J Proteome Res; 2018 Oct; 17(10):3526-3536. PubMed ID: 30180576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mass graph-based approach for the identification of modified proteoforms using top-down tandem mass spectra.
    Kou Q; Wu S; Tolic N; Paša-Tolic L; Liu Y; Liu X
    Bioinformatics; 2017 May; 33(9):1309-1316. PubMed ID: 28453668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Capillary Isoelectric Focusing-Tandem Mass Spectrometry for Qualitative and Quantitative Top-Down Proteomics.
    Xu T; Shen X; Yang Z; Chen D; Lubeckyj RA; McCool EN; Sun L
    Anal Chem; 2020 Dec; 92(24):15890-15898. PubMed ID: 33263984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graph-based approach for proteoform identification and quantification using top-down homogeneous multiplexed tandem mass spectra.
    Zhu K; Liu X
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):280. PubMed ID: 30367573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-down mass spectrometry for characterizing the low molecular weight proteome of canine osteosarcoma cell phenotypes.
    Yang L; Stanisheuski S; Song Z; Bracha S; Maier CS
    Eur J Mass Spectrom (Chichester); 2023 Oct; 29(5-6):313-325. PubMed ID: 37724027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.