These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3793741)

  • 1. Analysis of blood flow through a model of the human arterial system under periodic body acceleration.
    Sud VK; Sekhon GS
    J Biomech; 1986; 19(11):929-41. PubMed ID: 3793741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of periodic accelerations on blood flow in arteries.
    Sud VK; Von Gierke HE; Kaleps I; Oestreicher HL
    Bull Math Biol; 1983; 45(5):857-67. PubMed ID: 6652286
    [No Abstract]   [Full Text] [Related]  

  • 3. Arterial flow under periodic body acceleration.
    Sud VK; Sekhon GS
    Bull Math Biol; 1985; 47(1):35-52. PubMed ID: 3986403
    [No Abstract]   [Full Text] [Related]  

  • 4. Particulate suspension model for blood flow under external body acceleration.
    Srivastava LM; Edemeka UE; Srivastava VP
    Int J Biomed Comput; 1994 Oct; 37(2):113-29. PubMed ID: 7705892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow under the influence of externally applied periodic accelerations in large and small arteries.
    Sud VK; von Gierke HE; Kaleps I; Oestreicher HL
    Med Biol Eng Comput; 1983 Jul; 21(4):446-52. PubMed ID: 6888012
    [No Abstract]   [Full Text] [Related]  

  • 6. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady flow of a viscous fluid through a network of tubes with applications to the human arterial system.
    Sud VK; Sekhon GS
    J Biomech; 1990; 23(6):513-27. PubMed ID: 2341415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems.
    Casulli V; Dumbser M; Toro EF
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):257-72. PubMed ID: 25099329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary theoretical study of arterial pressure perturbations under shock acceleration.
    Belardinelli E; Ursino M; Iemmi E
    J Biomech Eng; 1989 Aug; 111(3):233-40. PubMed ID: 2779189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite-element model of blood flow in arteries including taper, branches, and obstructions.
    Porenta G; Young DF; Rogge TR
    J Biomech Eng; 1986 May; 108(2):161-7. PubMed ID: 3724104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow through the human arterial system in the presence of a steady magnetic field.
    Sud VK; Sekhon GS
    Phys Med Biol; 1989 Jul; 34(7):795-805. PubMed ID: 2780798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics.
    Pirola S; Cheng Z; Jarral OA; O'Regan DP; Pepper JR; Athanasiou T; Xu XY
    J Biomech; 2017 Jul; 60():15-21. PubMed ID: 28673664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model study of flow in curved and planar arterial bifurcations.
    Batten JR; Nerem RM
    Cardiovasc Res; 1982 Apr; 16(4):178-86. PubMed ID: 7105085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow in arteries in the presence of stenosis.
    Misra JC; Chakravarty S
    J Biomech; 1986; 19(11):907-18. PubMed ID: 3793739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specific role of gravitational accelerations for arterial adaptations.
    Weber T; Ducos M; Mulder E; Herrera F; Brüggemann GP; Bloch W; Rittweger J
    J Appl Physiol (1985); 2013 Feb; 114(3):387-93. PubMed ID: 23221961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional blood flow during periodic acceleration.
    Adams JA; Mangino MJ; Bassuk J; Kurlansky P; Sackner MA
    Crit Care Med; 2001 Oct; 29(10):1983-8. PubMed ID: 11588467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.