These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37937842)

  • 1. mRNAs encoding self-DNA reactive cGAS enhance the immunogenicity of lipid nanoparticle vaccines.
    Zhivaki D; Gosselin EA; Sengupta D; Concepcion H; Arinze C; Chow J; Nikiforov A; Komoroski V; MacFarlane C; Sullivan C; Kagan JC
    mBio; 2023 Dec; 14(6):e0250623. PubMed ID: 37937842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria.
    Meulewaeter S; Aernout I; Deprez J; Engelen Y; De Velder M; Franceschini L; Breckpot K; Van Calenbergh S; Asselman C; Boucher K; Impens F; De Smedt SC; Verbeke R; Lentacker I
    J Control Release; 2024 Jun; 370():379-391. PubMed ID: 38697317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mRNA-encoded, constitutively active STING
    Tse SW; McKinney K; Walker W; Nguyen M; Iacovelli J; Small C; Hopson K; Zaks T; Huang E
    Mol Ther; 2021 Jul; 29(7):2227-2238. PubMed ID: 33677092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens.
    Swaminathan G; Thoryk EA; Cox KS; Meschino S; Dubey SA; Vora KA; Celano R; Gindy M; Casimiro DR; Bett AJ
    Vaccine; 2016 Jan; 34(1):110-9. PubMed ID: 26555351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric cGAMP microparticles affect the immunogenicity of a broadly active influenza mRNA lipid nanoparticle vaccine.
    Hendy DA; Ma Y; Dixon TA; Murphy CT; Pena ES; Carlock MA; Ross TM; Bachelder EM; Ainslie KM; Fenton OS
    J Control Release; 2024 Aug; 372():168-175. PubMed ID: 38844178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants.
    Mahalingam G; Rachamalla HK; Arjunan P; Karuppusamy KV; Periyasami Y; Mohan A; Subramaniyam K; M S; Rajendran V; Moorthy M; Varghese GM; Mohankumar KM; Thangavel S; Srivastava A; Marepally S
    Mol Ther; 2024 May; 32(5):1284-1297. PubMed ID: 38414245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen.
    Kawai A; Noda M; Hirata H; Munakata L; Matsuda T; Omata D; Takemura N; Onoe S; Hirose M; Kato T; Saitoh T; Hirai T; Suzuki R; Yoshioka Y
    ACS Nano; 2024 Jul; 18(26):16589-16609. PubMed ID: 38885198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in quadrivalent influenza vaccine vaccinated mice.
    Jangra S; Lamoot A; Singh G; Laghlali G; Chen Y; Ye T; García-Sastre A; De Geest BG; Schotsaert M
    Front Immunol; 2024; 15():1370564. PubMed ID: 38711520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses.
    Alameh MG; Tombácz I; Bettini E; Lederer K; Sittplangkoon C; Wilmore JR; Gaudette BT; Soliman OY; Pine M; Hicks P; Manzoni TB; Knox JJ; Johnson JL; Laczkó D; Muramatsu H; Davis B; Meng W; Rosenfeld AM; Strohmeier S; Lin PJC; Mui BL; Tam YK; Karikó K; Jacquet A; Krammer F; Bates P; Cancro MP; Weissman D; Luning Prak ET; Allman D; Locci M; Pardi N
    Immunity; 2021 Dec; 54(12):2877-2892.e7. PubMed ID: 34852217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ionizable Lipid Material with a Vitamin E Scaffold as an mRNA Vaccine Platform for Efficient Cytotoxic T Cell Responses.
    Oyama R; Ishigame H; Tanaka H; Tateshita N; Itazawa M; Imai R; Nishiumi N; Kishikawa JI; Kato T; Anindita J; Nishikawa Y; Maeki M; Tokeshi M; Tange K; Nakai Y; Sakurai Y; Okada T; Akita H
    ACS Nano; 2023 Oct; 17(19):18758-18774. PubMed ID: 37814788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for the development of mRNA lipid nanoparticle vaccines and analysis of immunization efficiency in mice.
    Karekar N; Reid Cahn A; Morla-Folch J; Saffon A; Ward RW; Ananthanarayanan A; Teunissen AJP; Bhardwaj N; Vabret N
    STAR Protoc; 2024 Jun; 5(2):103087. PubMed ID: 38795353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid-Encapsulated mRNAs Encoding Complex Fusion Proteins Potentiate Antitumor Immune Responses.
    Shuptrine CW; Chen Y; Miriyala J; Lenz K; Moffett D; Nguyen TA; Michaux J; Campbell K; Smith C; Morra M; Rivera-Molina Y; Murr N; Cooper S; McGuire A; Makani V; Oien N; Zugates JT; de Silva S; Schreiber TH; de Picciotto S; Fromm G
    Cancer Res; 2024 May; 84(10):1550-1559. PubMed ID: 38381555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size.
    Shi R; Liu X; Wang Y; Pan M; Wang S; Shi L; Ni B
    Hum Vaccin Immunother; 2024 Dec; 20(1):2342592. PubMed ID: 38714327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Synergistic Lipid Nanoparticle Encapsulating mRNA Shingles Vaccine Induces Potent Immune Responses and Protects Guinea Pigs from Viral Challenges.
    Cheng X; Liu S; Sun J; Liu L; Ma X; Li J; Fan B; Yang C; Zhao Y; Liu S; Wen Y; Li W; Sun S; Mi S; Huo H; Miao L; Pan H; Cui X; Lin J; Lu X
    Adv Mater; 2024 Mar; 36(13):e2310886. PubMed ID: 38145557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A long-term stable cold-chain-friendly HIV mRNA vaccine encoding multi-epitope viral protease cleavage site immunogens inducing immunogen-specific protective T cell immunity.
    Mandal S; Ghosh JS; Lohani SC; Zhao M; Cheng Y; Burrack R; Luo M; Li Q
    Emerg Microbes Infect; 2024 Dec; 13(1):2377606. PubMed ID: 38979723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines.
    Han X; Alameh MG; Butowska K; Knox JJ; Lundgreen K; Ghattas M; Gong N; Xue L; Xu Y; Lavertu M; Bates P; Xu J; Nie G; Zhong Y; Weissman D; Mitchell MJ
    Nat Nanotechnol; 2023 Sep; 18(9):1105-1114. PubMed ID: 37365276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Basic Method for Formulating mRNA-Lipid Nanoparticle Vaccines in the Lab.
    Jarzebska NT; Frei J; Mellett M; Kündig TM; Pascolo S; Reichmuth AM
    Methods Mol Biol; 2024; 2786():237-254. PubMed ID: 38814398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and Evaluation of Nucleoside-Modified mRNA Vaccines for Infectious Diseases.
    Vadovics M; Muramatsu H; Sárközy A; Pardi N
    Methods Mol Biol; 2024; 2786():167-181. PubMed ID: 38814394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice.
    Laczkó D; Hogan MJ; Toulmin SA; Hicks P; Lederer K; Gaudette BT; Castaño D; Amanat F; Muramatsu H; Oguin TH; Ojha A; Zhang L; Mu Z; Parks R; Manzoni TB; Roper B; Strohmeier S; Tombácz I; Arwood L; Nachbagauer R; Karikó K; Greenhouse J; Pessaint L; Porto M; Putman-Taylor T; Strasbaugh A; Campbell TA; Lin PJC; Tam YK; Sempowski GD; Farzan M; Choe H; Saunders KO; Haynes BF; Andersen H; Eisenlohr LC; Weissman D; Krammer F; Bates P; Allman D; Locci M; Pardi N
    Immunity; 2020 Oct; 53(4):724-732.e7. PubMed ID: 32783919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.