BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37937887)

  • 1. Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.
    Ni Y; He J; Chalise P
    Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37937887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omics clustering for cancer subtyping based on latent subspace learning.
    Ye X; Shang Y; Shi T; Zhang W; Sakurai T
    Comput Biol Med; 2023 Sep; 164():107223. PubMed ID: 37490833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization.
    Chalise P; Ni Y; Fridley BL
    Comput Biol Med; 2020 Mar; 118():103625. PubMed ID: 31999549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical Methods for Integrative Clustering of Multi-omics Data.
    Chalise P; Kwon D; Fridley BL; Mo Q
    Methods Mol Biol; 2023; 2629():73-93. PubMed ID: 36929074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.
    Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F
    Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
    Pierre-Jean M; Mauger F; Deleuze JF; Le Floch E
    Bioinformatics; 2022 Jan; 38(4):900-907. PubMed ID: 34849583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm.
    Chalise P; Fridley BL
    PLoS One; 2017; 12(5):e0176278. PubMed ID: 28459819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scMNMF: a novel method for single-cell multi-omics clustering based on matrix factorization.
    Qiu Y; Guo D; Zhao P; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multiview Clustering Method With Low-Rank and Sparsity Constraints for Cancer Subtyping.
    Zhanpeng H; Jiekang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3213-3223. PubMed ID: 34705654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering.
    Crippa V; Malighetti F; Villa M; Graudenzi A; Piazza R; Mologni L; Ramazzotti D
    Comput Biol Med; 2023 Aug; 162():107064. PubMed ID: 37267828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired single-cell multi-omics data integration with Mowgli.
    Huizing GJ; Deutschmann IM; Peyré G; Cantini L
    Nat Commun; 2023 Nov; 14(1):7711. PubMed ID: 38001063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative subspace clustering by common and specific decomposition for applications on cancer subtype identification.
    Guo Y; Li H; Cai M; Li L
    BMC Med Genomics; 2019 Dec; 12(Suppl 9):191. PubMed ID: 31874642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.