These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37937951)

  • 1. Design and experimental realization of triple-band electromagnetically induced transparency terahertz metamaterials employing two big-bright modes for sensing applications.
    Wang BX; Duan G; Lv W; Tao Y; Xiong H; Zhang DQ; Yang G; Shu FZ
    Nanoscale; 2023 Nov; 15(45):18435-18446. PubMed ID: 37937951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials.
    Ren K; Zhang Y; Ren X; He Y; Han Q
    Front Optoelectron; 2021 Jun; 14(2):221-228. PubMed ID: 36637661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Demonstration of Electromagnetically Induced Transparency in a Conductively Coupled Flexible Metamaterial with Cheap Aluminum Foil.
    Hu J; Lang T; Xu W; Liu J; Hong Z
    Nanoscale Res Lett; 2019 Dec; 14(1):359. PubMed ID: 31792628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range.
    Ma T; Huang Q; He H; Zhao Y; Lin X; Lu Y
    Opt Express; 2019 Jun; 27(12):16624-16634. PubMed ID: 31252886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect.
    Gao L; Feng C; Li Y; Chen X; Wang Q; Zhao X
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial.
    Sarkar R; Ghindani D; Devi KM; Prabhu SS; Ahmad A; Kumar G
    Sci Rep; 2019 Dec; 9(1):18068. PubMed ID: 31792270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constant frequency reconfigurable terahertz metasurface based on tunable electromagnetically induced transparency-like approach.
    Cao P; Li Y; Deng Y; Wu Y
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35772294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial.
    Zhang K; Wang C; Qin L; Peng RW; Xu DH; Xiong X; Wang M
    Opt Lett; 2014 Jun; 39(12):3539-42. PubMed ID: 24978531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiband transparency effect induced by toroidal excitation in a strongly coupled planar terahertz metamaterial.
    Bhattacharya A; Sarkar R; Sharma NK; Bhowmik BK; Ahmad A; Kumar G
    Sci Rep; 2021 Sep; 11(1):19186. PubMed ID: 34584141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Modulation of an All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency in Terahertz.
    Wang L; Gao Z; Hou Z; Song J; Liu X; Zhang Y; Wang X; Yang F; Shi Y
    ACS Omega; 2021 Feb; 6(6):4480-4484. PubMed ID: 33644557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analogue of electromagnetically induced transparency in a metal-dielectric bilayer terahertz metamaterial.
    Yue Y; He F; Chen L; Shu F; Jing X; Hong Z
    Opt Express; 2021 Jul; 29(14):21810-21819. PubMed ID: 34265960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano resonances induced by strong conductive coupling in cross-shaped metasurfaces for tunable EIT-like phenomena.
    Teymoori M; Yalcinkaya AD
    Sci Rep; 2024 Aug; 14(1):18556. PubMed ID: 39122912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable terahertz electromagnetically induced transparency based on a composite structure superconducting metamaterial.
    Li C; Teng Y; Xiao Y; Su R; Yu M; Juan Y; Hua M; He J; Jiang L
    Appl Opt; 2022 Nov; 61(32):9398-9404. PubMed ID: 36606885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule.
    Zhao Z; Zheng X; Peng W; Zhang J; Zhao H; Luo Z; Shi W
    Opt Express; 2017 Oct; 25(20):24410-24424. PubMed ID: 29041386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband Filter and Adjustable Extinction Ratio Modulator Based on Metal-Graphene Hybrid Metamaterials.
    Sun H; Zhao L; Dai J; Liang Y; Guo J; Meng H; Liu H; Dai Q; Wei Z
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32664539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable and three-dimensional dual-band metamaterial absorber based on electromagnetically induced transparency with vanadium dioxide.
    Chen M; Yang XX
    Phys Chem Chem Phys; 2023 May; 25(19):13393-13398. PubMed ID: 37158637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes.
    Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y
    Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Broad Stopband Filters Based on Multilayer Electromagnetically Induced Transparency Metamaterial Structures.
    Liu Z; Qi L; Shah SMA; Sun D; Li B
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.
    Xu Q; Su X; Ouyang C; Xu N; Cao W; Zhang Y; Li Q; Hu C; Gu J; Tian Z; Azad AK; Han J; Zhang W
    Opt Lett; 2016 Oct; 41(19):4562-4565. PubMed ID: 27749881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.