These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37938394)

  • 1. Continuous chest compressions are associated with higher peak inspiratory pressures when compared to 30:2 in an experimental cardiac arrest model.
    Mälberg J; Marchesi S; Spangler D; Hadziosmanovic N; Smekal D; Rubertsson S
    Intensive Care Med Exp; 2023 Nov; 11(1):75. PubMed ID: 37938394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventilation during continuous compressions or at 30:2 compression-to-ventilation ratio results in similar arterial oxygen and carbon dioxide levels in an experimental model of prolonged cardiac arrest.
    Kopra J; Litonius E; Pekkarinen PT; Laitinen M; Heinonen JA; Fontanelli L; Mäkiaho TP; Skrifvars MB
    Intensive Care Med Exp; 2023 Jan; 11(1):3. PubMed ID: 36607514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of continuous compression with regular ventilations versus 30:2 compressions-ventilations strategy during mechanical cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Yang Z; Liu Q; Zheng G; Liu Z; Jiang L; Lin Q; Chen R; Tang W
    J Thorac Dis; 2017 Sep; 9(9):3232-3238. PubMed ID: 29221300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung tissue injury and hemodynamic effects of ventilations synchronized or unsynchronized to continuous chest compressions in a porcine cardiac arrest model.
    Olasveengen TM; Skåre C; Skjerven-Martinsen M; Hoff-Olsen P; Kramer-Johansen J; Hoff Nordum F; Eriksen M; Anderas Norseng P; Wik L
    Resusc Plus; 2024 Mar; 17():100530. PubMed ID: 38155976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenation and ventilation during prolonged experimental cardiopulmonary resuscitation with either continuous or 30:2 compression-to-ventilation ratios together with 10 cmH
    Kopra J; Litonius E; Pekkarinen PT; Laitinen M; Heinonen JA; Fontanelli L; Skrifvars MB
    Intensive Care Med Exp; 2024 Apr; 12(1):36. PubMed ID: 38607459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental study on effect of airway pressure on cardiopulmonary resuscitation].
    Tan D; Sun F; Fu Y; Shao S; Zhang Y; Hu Y; Xu J; Zhu H; Yu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2017 Jun; 29(6):531-535. PubMed ID: 28625243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bag-Valve-Mask Ventilation and Survival From Out-of-Hospital Cardiac Arrest: A Multicenter Study.
    Idris AH; Aramendi Ecenarro E; Leroux B; Jaureguibeitia X; Yang BY; Shaver S; Chang MP; Rea T; Kudenchuk P; Christenson J; Vaillancourt C; Callaway C; Salcido D; Carson J; Blackwood J; Wang HE
    Circulation; 2023 Dec; 148(23):1847-1856. PubMed ID: 37952192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios.
    Sanders AB; Kern KB; Berg RA; Hilwig RW; Heidenrich J; Ewy GA
    Ann Emerg Med; 2002 Dec; 40(6):553-62. PubMed ID: 12447330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A; Pantazopoulos I; Giokas G; Chalkias A; Mavrovounis G; Papalois A; Douvanas A; Xanthos T; Iacovidou N
    Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model.
    Tan D; Xu J; Shao S; Fu Y; Sun F; Zhang Y; Hu Y; Walline J; Zhu H; Yu X
    PLoS One; 2017; 12(2):e0171869. PubMed ID: 28187154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal resuscitation with continuous chest compressions and high frequency percussive ventilation in preterm lambs.
    Giusto E; Sankaran D; Lesneski A; Joudi H; Hardie M; Hammitt V; Zeinali L; Lakshminrusimha S; Vali P
    Pediatr Res; 2024 Jan; 95(1):160-166. PubMed ID: 37726545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rescuer fatigue: standard versus continuous chest-compression cardiopulmonary resuscitation.
    Heidenreich JW; Berg RA; Higdon TA; Ewy GA; Kern KB; Sanders AB
    Acad Emerg Med; 2006 Oct; 13(10):1020-6. PubMed ID: 17015418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison Between 30:1 and 30:2 Compression-to-ventilation Ratios for Cardiopulmonary Resuscitation: Are Two Ventilations Necessary?
    Cha KC; Kim YW; Kim TH; Jung WJ; Yook H; Choi E; Cha YS; Kim OH; Kim H; Lee KH; Hwang SO
    Acad Emerg Med; 2015 Nov; 22(11):1261-6. PubMed ID: 26470011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ventilation during cardiopulmonary resuscitation (CPR). A literature study and analysis of ventilation strategies].
    Wenzel V; Lindner KH; Prengel AW
    Anaesthesist; 1997 Feb; 46(2):133-41. PubMed ID: 9133175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous compression with asynchronous ventilation improves CPR prognosis? A meta-analysis from human and animal studies.
    Sun M; Zhu A; Tang Y
    Am J Emerg Med; 2023 Feb; 64():26-36. PubMed ID: 36435007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of continuous compressions and 30:2 cardiopulmonary resuscitation on global ventilation/perfusion values during resuscitation in a porcine model.
    Wang S; Li C; Ji X; Yang L; Su Z; Wu J
    Crit Care Med; 2010 Oct; 38(10):2024-30. PubMed ID: 20683258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of an inspiratory impedance threshold valve during chest compressions without assisted ventilation may result in hypoxaemia.
    Herff H; Raedler C; Zander R; Wenzel V; Schmittinger CA; Brenner E; Rieger M; Lindner KH
    Resuscitation; 2007 Mar; 72(3):466-76. PubMed ID: 17150297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.