These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 37938542)
41. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
42. Biofabrication of Cellulose-based Hydrogels for Advanced Wound Healing: A Special Emphasis on 3D Bioprinting. Tabatabaei Hosseini BS; Meadows K; Gabriel V; Hu J; Kim K Macromol Biosci; 2024 May; 24(5):e2300376. PubMed ID: 38031512 [TBL] [Abstract][Full Text] [Related]
43. Bioprinting for Skin. Quílez C; de Aranda Izuzquiza G; García M; López V; Montero A; Valencia L; Velasco D Methods Mol Biol; 2020; 2140():217-228. PubMed ID: 32207115 [TBL] [Abstract][Full Text] [Related]
44. Planar-/Curvilinear-Bioprinted Tri-Cell-Laden Hydrogel for Healing Irregular Chronic Wounds. Wu SD; Dai NT; Liao CY; Kang LY; Tseng YW; Hsu SH Adv Healthc Mater; 2022 Aug; 11(16):e2201021. PubMed ID: 35758924 [TBL] [Abstract][Full Text] [Related]
45. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
46. 3D bioprinting of a gradient stiffened gelatin-alginate hydrogel with adipose-derived stem cells for full-thickness skin regeneration. Ma Y; Wang Y; Chen D; Su T; Chang Q; Huang W; Lu F J Mater Chem B; 2023 Mar; 11(13):2989-3000. PubMed ID: 36919715 [TBL] [Abstract][Full Text] [Related]
47. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
48. Targeted micro-heterogeneity in bioinks allows for 3D printing of complex constructs with improved resolution and cell viability. Maciel BR; Grimm A; Oelschlaeger C; Schepers U; Willenbacher N Biofabrication; 2023 Aug; 15(4):. PubMed ID: 37552974 [TBL] [Abstract][Full Text] [Related]
49. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]
50. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
51. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
53. Injectable Macroporous Hydrogel Formed by Enzymatic Cross-Linking of Gelatin Microgels. Hou S; Lake R; Park S; Edwards S; Jones C; Jeong KJ ACS Appl Bio Mater; 2018 Nov; 1(5):1430-1439. PubMed ID: 31701093 [TBL] [Abstract][Full Text] [Related]
54. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
55. Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review. Masri S; Zawani M; Zulkiflee I; Salleh A; Fadilah NIM; Maarof M; Wen APY; Duman F; Tabata Y; Aziz IA; Bt Hj Idrus R; Fauzi MB Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008902 [TBL] [Abstract][Full Text] [Related]
56. Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study. Niu C; Wang L; Ji D; Ren M; Ke D; Fu Q; Zhang K; Yang X Cell Regen; 2022 May; 11(1):10. PubMed ID: 35490207 [TBL] [Abstract][Full Text] [Related]
57. A novel porous hydrogel based on hybrid gelation for injectable and tough scaffold implantation and tissue engineering applications. Hidalgo C; Méndez-Ruette M; Zavala G; Viafara-García S; Novoa J; Díaz-Calderón P; González-Arriagada WA; Cuenca J; Khoury M; Acevedo JP Biomed Mater; 2023 May; 18(4):. PubMed ID: 37167997 [TBL] [Abstract][Full Text] [Related]
58. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
59. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
60. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]