BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37938588)

  • 21. Cell-Penetrating Antimicrobial Peptides Derived from an Atypical Staphylococcal δ-Toxin.
    Deeyagahage K; Ruzzini A
    Microbiol Spectr; 2021 Dec; 9(3):e0158421. PubMed ID: 34937169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats.
    Wang A; Zhou M; Chen Q; Jin H; Xu G; Guo R; Wang J; Lai R
    Biomolecules; 2023 Sep; 13(10):. PubMed ID: 37892141
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L
    Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity.
    Khara JS; Obuobi S; Wang Y; Hamilton MS; Robertson BD; Newton SM; Yang YY; Langford PR; Ee PLR
    Acta Biomater; 2017 Jul; 57():103-114. PubMed ID: 28457962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.
    Lobanov MY; Slizen MV; Dovidchenko NV; Panfilov AV; Surin AA; Likhachev IV; Galzitskaya OV
    Mol Inform; 2024 May; 43(5):e202200181. PubMed ID: 36961202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Selectively Targeting Antimicrobial Peptides.
    Lei M; Jayaraman A; Van Deventer JA; Lee K
    Annu Rev Biomed Eng; 2021 Jul; 23():339-357. PubMed ID: 33852346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimicrobial peptides: features, applications and the potential use against covid-19.
    Mabrouk DM
    Mol Biol Rep; 2022 Oct; 49(10):10039-10050. PubMed ID: 35606604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria.
    Mba IE; Nweze EI
    Yale J Biol Med; 2022 Dec; 95(4):445-463. PubMed ID: 36568838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery.
    Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P
    Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield.
    Puan SL; Erriah P; Baharudin MMA; Yahaya NM; Kamil WNIWA; Ali MSM; Ahmad SA; Oslan SN; Lim S; Sabri S
    Appl Microbiol Biotechnol; 2023 Sep; 107(18):5569-5593. PubMed ID: 37450018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening for cysteine-stabilized scaffolds for developing proteolytic-resistant AMPs.
    Maximiano MR; Rezende SB; Rios TB; Leite ML; Vilas Boas LCP; da Cunha NB; Pires ÁDS; Cardoso MH; Franco OL
    Methods Enzymol; 2022; 663():67-98. PubMed ID: 35168798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens.
    Chaudhary S; Ali Z; Tehseen M; Haney EF; Pantoja-Angles A; Alshehri S; Wang T; Clancy GJ; Ayach M; Hauser C; Hong PY; Hamdan SM; Hancock REW; Mahfouz M
    Nat Commun; 2023 Mar; 14(1):1464. PubMed ID: 36928189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial Peptides from Human Microbiome Against Multidrug Efflux Pump of Pseudomonas aeruginosa: a Computational Study.
    Mulpuru V; Mishra N
    Probiotics Antimicrob Proteins; 2022 Feb; 14(1):180-188. PubMed ID: 35040024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria.
    Vishnepolsky B; Zaalishvili G; Karapetian M; Nasrashvili T; Kuljanishvili N; Gabrielian A; Rosenthal A; Hurt DE; Tartakovsky M; Grigolava M; Pirtskhalava M
    Pharmaceuticals (Basel); 2019 Jun; 12(2):. PubMed ID: 31163671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alpha-helical cationic antimicrobial peptides: relationships of structure and function.
    Huang Y; Huang J; Chen Y
    Protein Cell; 2010 Feb; 1(2):143-52. PubMed ID: 21203984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unnatural amino acids: promising implications for the development of new antimicrobial peptides.
    Wang X; Yang X; Wang Q; Meng D
    Crit Rev Microbiol; 2023 Mar; 49(2):231-255. PubMed ID: 35254957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.