These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37938596)

  • 1. Delta radiomics analysis for prediction of intermediary- and high-risk factors for patients with locally advanced cervical cancer receiving neoadjuvant therapy.
    Wu RR; Zhou YM; Xie XY; Chen JY; Quan KR; Wei YT; Xia XY; Chen WJ
    Sci Rep; 2023 Nov; 13(1):19409. PubMed ID: 37938596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics analysis for prediction of lymph node metastasis after neoadjuvant chemotherapy based on pretreatment MRI in patients with locally advanced cervical cancer.
    Liu J; Dong L; Zhang X; Wu Q; Yang Z; Zhang Y; Xu C; Wu Q; Wang M
    Front Oncol; 2024; 14():1376640. PubMed ID: 38779088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 4. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy.
    Zeng Q; Ke M; Zhong L; Zhou Y; Zhu X; He C; Liu L
    Acad Radiol; 2023 Aug; 30(8):1638-1647. PubMed ID: 36564256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X
    Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy.
    Autorino R; Gui B; Panza G; Boldrini L; Cusumano D; Russo L; Nardangeli A; Persiani S; Campitelli M; Ferrandina G; Macchia G; Valentini V; Gambacorta MA; Manfredi R
    Radiol Med; 2022 May; 127(5):498-506. PubMed ID: 35325372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics.
    Liu J; Wu Y; Jia W; Han M; Chen Y; Li J; Wu B; Yin S; Zhang X; Chen J; Yu P; Luo H; Tu J; Zhou F; Cheng X; Yi Y
    Front Neurosci; 2023; 17():1110579. PubMed ID: 37214402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models.
    Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J
    BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An MRI-based machine learning radiomics can predict short-term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: A multicenter study.
    Xin Z; Yan W; Feng Y; Yunzhi L; Zhang Y; Wang D; Chen W; Peng J; Guo C; Chen Z; Wang X; Zhu J; Lei J
    Cancer Med; 2023 Oct; 12(19):19383-19393. PubMed ID: 37772478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal MRI-based deep-radiomics model predicts response in cervical cancer treated with neoadjuvant chemoradiotherapy.
    Cai Z; Li S; Xiong Z; Lin J; Sun Y
    Sci Rep; 2024 Aug; 14(1):19090. PubMed ID: 39154103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients.
    Chen S; Shu Z; Li Y; Chen B; Tang L; Mo W; Shao G; Shao F
    Front Oncol; 2020; 10():1410. PubMed ID: 32923392
    [No Abstract]   [Full Text] [Related]  

  • 14. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography.
    Mao N; Shi Y; Lian C; Wang Z; Zhang K; Xie H; Zhang H; Chen Q; Cheng G; Xu C; Dai Y
    Eur Radiol; 2022 May; 32(5):3207-3219. PubMed ID: 35066632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer.
    Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q
    World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group.
    Ikushima H; Haga A; Ando K; Kato S; Kaneyasu Y; Uno T; Okonogi N; Yoshida K; Ariga T; Isohashi F; Harima Y; Kanemoto A; Ii N; Wakatsuki M; Ohno T
    J Radiat Res; 2022 Jan; 63(1):98-106. PubMed ID: 34865079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI-based radiomics to predict neoadjuvant chemoradiotherapy outcomes in locally advanced rectal cancer: A multicenter study.
    Xiang Y; Li S; Wang H; Song M; Hu K; Wang F; Wang Z; Niu Z; Liu J; Cai Y; Li Y; Zhu X; Geng J; Zhang Y; Teng H; Wang W
    Clin Transl Radiat Oncol; 2023 Jan; 38():175-182. PubMed ID: 36471751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer.
    Zeng Q; Xiong F; Liu L; Zhong L; Cai F; Zeng X
    Acad Radiol; 2023 Sep; 30 Suppl 2():S38-S49. PubMed ID: 37169624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy.
    Zhang X; Zhao J; Zhang Q; Wang S; Zhang J; An J; Xie L; Yu X; Zhao X
    Cancer Imaging; 2022 Jul; 22(1):35. PubMed ID: 35842679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-derived radiomics analysis improves the noninvasive pretreatment identification of multimodality therapy candidates with early-stage cervical cancer.
    Li Y; Ren J; Yang JJ; Cao Y; Xia C; Lee EYP; Chen B; Guan H; Qi YF; Gao X; Tang W; Chen K; Jin ZY; He YL; Xiang Y; Xue HD
    Eur Radiol; 2022 Jun; 32(6):3985-3995. PubMed ID: 35018480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.