These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37938950)

  • 1. Contributing Components of Metabolic Energy Models to Metabolic Cost Estimations in Gait.
    Gambietz M; Nitschke M; Miehling J; Koelewijn AD
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1228-1236. PubMed ID: 37938950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between joint-space and musculoskeletal estimations of metabolic rate time profiles.
    Mohammadzadeh Gonabadi A; Antonellis P; Malcolm P
    PLoS Comput Biol; 2020 Oct; 16(10):e1008280. PubMed ID: 33112850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid energy expenditure estimation for ankle assisted and inclined loaded walking.
    Slade P; Troutman R; Kochenderfer MJ; Collins SH; Delp SL
    J Neuroeng Rehabil; 2019 Jun; 16(1):67. PubMed ID: 31171003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of types of ankle-foot orthoses on energy expenditure metrics during walking in individuals with stroke: a systematic review.
    Daryabor A; Yamamoto S; Orendurff M; Kobayashi T
    Disabil Rehabil; 2022 Jan; 44(2):166-176. PubMed ID: 32432905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A; Afschrift M; De Schutter J; Jonkers I; De Groote F
    Gait Posture; 2019 Oct; 74():223-230. PubMed ID: 31563823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metabolic energy expenditure model with a continuous first derivative and its application to predictive simulations of gait.
    Koelewijn AD; Dorschky E; van den Bogert AJ
    Comput Methods Biomech Biomed Engin; 2018 Jun; 21(8):521-531. PubMed ID: 30027769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level.
    Waterval NFJ; Nollet F; Harlaar J; Brehm MA
    J Neuroeng Rehabil; 2019 Oct; 16(1):120. PubMed ID: 31623670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple model of mechanical effects to estimate metabolic cost of human walking.
    Faraji S; Wu AR; Ijspeert AJ
    Sci Rep; 2018 Jul; 8(1):10998. PubMed ID: 30030539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic cost calculations of gait using musculoskeletal energy models, a comparison study.
    Koelewijn AD; Heinrich D; van den Bogert AJ
    PLoS One; 2019; 14(9):e0222037. PubMed ID: 31532796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical energy estimation during walking: validity and sensitivity in typical gait and in children with cerebral palsy.
    Van de Walle P; Hallemans A; Schwartz M; Truijen S; Gosselink R; Desloovere K
    Gait Posture; 2012 Feb; 35(2):231-7. PubMed ID: 21962844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human walking in the real world: Interactions between terrain type, gait parameters, and energy expenditure.
    Kowalsky DB; Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    PLoS One; 2021; 16(1):e0228682. PubMed ID: 33439858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric Modeling of Human Gradient Walking for Predicting Minimum Energy Expenditure.
    Saborit G; Casinos A
    Comput Math Methods Med; 2015; 2015():407156. PubMed ID: 26417377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humans trade off whole-body energy cost to avoid overburdening muscles while walking.
    McDonald KA; Cusumano JP; Hieronymi A; Rubenson J
    Proc Biol Sci; 2022 Oct; 289(1985):20221189. PubMed ID: 36285498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester.
    Shepertycky M; Liu YF; Li Q
    PLoS One; 2023; 18(8):e0289811. PubMed ID: 37561773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the 'cost of generating force' hypothesis across frequency in human running and hopping.
    Allen SP; Beck ON; Grabowski AM
    J Exp Biol; 2022 Sep; 225(18):. PubMed ID: 36111420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.