BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37938978)

  • 1. Equivariant Flexible Modeling of the Protein-Ligand Binding Pose with Geometric Deep Learning.
    Dong T; Yang Z; Zhou J; Chen CY
    J Chem Theory Comput; 2023 Nov; 19(22):8446-8459. PubMed ID: 37938978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and accurate large library ligand docking with KarmaDock.
    Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T
    Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction.
    Tan H; Wang Z; Hu G
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38102069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DiffBindFR: an SE(3) equivariant network for flexible protein-ligand docking.
    Zhu J; Gu Z; Pei J; Lai L
    Chem Sci; 2024 May; 15(21):7926-7942. PubMed ID: 38817560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
    Masters MR; Mahmoud AH; Wei Y; Lill MA
    J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4.
    Lim S; Lee YO; Yoon J; Kim YJ
    J Comput Aided Mol Des; 2022 Mar; 36(3):225-235. PubMed ID: 35314897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
    Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD
    J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model.
    Lu W; Zhang J; Huang W; Zhang Z; Jia X; Wang Z; Shi L; Li C; Wolynes PG; Zheng S
    Nat Commun; 2024 Feb; 15(1):1071. PubMed ID: 38316797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Protein-Ligand Interaction Modeling with cryo-EM Data, Templates, and Deep Learning in 2021 Ligand Model Challenge.
    Giri N; Cheng J
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method.
    Li Y; Li L; Wang S; Tang X
    Drug Discov Ther; 2023 Nov; 17(5):363-364. PubMed ID: 37766553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection.
    Nedumpully-Govindan P; Jemec DB; Ding F
    J Chem Inf Model; 2016 Jun; 56(6):1042-52. PubMed ID: 26252196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction.
    Gorantla R; Kubincová A; Weiße AY; Mey ASJS
    J Chem Inf Model; 2024 Apr; 64(7):2496-2507. PubMed ID: 37983381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multitask deep networks with grid featurization achieve improved scoring performance for protein-ligand binding.
    Xie L; Xu L; Chang S; Xu X; Meng L
    Chem Biol Drug Des; 2020 Sep; 96(3):973-983. PubMed ID: 33058459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling.
    Liu W; Liu Z; Liu H; Westerhoff LM; Zheng Z
    J Chem Inf Model; 2022 Nov; 62(22):5645-5665. PubMed ID: 36282990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Scoring Neural Network Replacing the Scoring Function Components to Improve the Performance of Structure-Based Molecular Docking.
    Yang L; Yang G; Chen X; Yang Q; Yao X; Bing Z; Niu Y; Huang L; Yang L
    ACS Chem Neurosci; 2021 Jun; 12(12):2133-2142. PubMed ID: 34081851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Docking of Macrocycles in Bound and Unbound Protein Structures with DynaDock.
    Meixner M; Zachmann M; Metzler S; Scheerer J; Zacharias M; Antes I
    J Chem Inf Model; 2022 Jul; 62(14):3426-3441. PubMed ID: 35796228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.