These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37939121)
1. Bacillus velezensis WB induces systemic resistance in watermelon against Fusarium wilt. Chen Z; Wang Z; Xu W Pest Manag Sci; 2024 Mar; 80(3):1423-1434. PubMed ID: 37939121 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptome Analysis Reveals the Biocontrol Mechanism of Jiang CH; Yao XF; Mi DD; Li ZJ; Yang BY; Zheng Y; Qi YJ; Guo JH Front Microbiol; 2019; 10():652. PubMed ID: 31001229 [TBL] [Abstract][Full Text] [Related]
3. Wheat straw increases the defense response and resistance of watermelon monoculture to Fusarium wilt. Tang L; Nie S; Li W; Fan C; Wang S; Wu F; Pan K BMC Plant Biol; 2019 Dec; 19(1):551. PubMed ID: 31829140 [TBL] [Abstract][Full Text] [Related]
4. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Jogaiah S; Abdelrahman M; Tran LP; Ito SI Mol Plant Pathol; 2018 Apr; 19(4):870-882. PubMed ID: 28605157 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhizal fungi by inducing watermelon roots secretion phthalates, altering soil enzyme activity and bacterial community composition to alleviate the watermelon wilt. Li W; Zhu C; Song Y; Yuan Y; Li M; Sun Y BMC Plant Biol; 2024 Jun; 24(1):593. PubMed ID: 38910247 [TBL] [Abstract][Full Text] [Related]
6. Complete genome sequence of Bacillus velezensis WB, an isolate from the watermelon rhizosphere: genomic insights into its antifungal effects. Wang KX; Xu WH; Chen ZN; Hu JL; Luo SQ; Wang ZG J Glob Antimicrob Resist; 2022 Sep; 30():442-444. PubMed ID: 35618208 [TBL] [Abstract][Full Text] [Related]
7. Antagonistic effect of Bacillus and Pseudomonas combinations against Fusarium oxysporum and their effect on disease resistance and growth promotion in watermelon. Yang D; Zhang X; Li Z; Chu R; Shah S; Wang X; Zhang X J Appl Microbiol; 2024 May; 135(5):. PubMed ID: 38632051 [TBL] [Abstract][Full Text] [Related]
8. Hormonal and metabolites responses in Fusarium wilt-susceptible and -resistant watermelon plants during plant-pathogen interactions. Kasote DM; Jayaprakasha GK; Ong K; Crosby KM; Patil BS BMC Plant Biol; 2020 Oct; 20(1):481. PubMed ID: 33092532 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt. Zhang Y; Xiao J; Yang K; Wang Y; Tian Y; Liang Z PLoS One; 2022; 17(8):e0272702. PubMed ID: 35947630 [TBL] [Abstract][Full Text] [Related]
10. Cyclic Lipopeptides of Al-Mutar DMK; Noman M; Abduljaleel Alzawar NS; Azizullah ; Li D; Song F J Fungi (Basel); 2023 Jun; 9(6):. PubMed ID: 37367623 [TBL] [Abstract][Full Text] [Related]
11. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Król P; Igielski R; Pollmann S; Kępczyńska E J Plant Physiol; 2015 May; 179():122-32. PubMed ID: 25867625 [TBL] [Abstract][Full Text] [Related]
12. Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon. Noman M; Ahmed T; Shahid M; Nazir MM; Azizullah ; Li D; Song F J Adv Res; 2024 May; 59():19-33. PubMed ID: 37385342 [TBL] [Abstract][Full Text] [Related]
13. Salicylic acid remodeling of the rhizosphere microbiome induces watermelon root resistance against Zhu F; Fang Y; Wang Z; Wang P; Yang K; Xiao L; Wang R Front Microbiol; 2022; 13():1015038. PubMed ID: 36212858 [No Abstract] [Full Text] [Related]
14. Study on the Role of Phytohormones in Resistance to Watermelon Zhu F; Wang Z; Fang Y; Tong J; Xiang J; Yang K; Wang R Plants (Basel); 2022 Jan; 11(2):. PubMed ID: 35050045 [No Abstract] [Full Text] [Related]
15. Bio-Functionalized Manganese Nanoparticles Suppress Fusarium Wilt in Watermelon (Citrullus lanatus L.) by Infection Disruption, Host Defense Response Potentiation, and Soil Microbial Community Modulation. Noman M; Ahmed T; Ijaz U; Shahid M; Nazir MM; Azizullah ; White JC; Li D; Song F Small; 2023 Jan; 19(2):e2205687. PubMed ID: 36382544 [TBL] [Abstract][Full Text] [Related]
16. Targeted Acquisition of Xie XG; Huang CY; Cai ZD; Chen Y; Dai CC J Agric Food Chem; 2019 Aug; 67(31):8536-8547. PubMed ID: 31310520 [TBL] [Abstract][Full Text] [Related]
17. Dong H; Gao R; Dong Y; Yao Q; Zhu H Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239871 [TBL] [Abstract][Full Text] [Related]
18. Effects of wheat intercropping on growth and occurrence of Fusarium wilt in watermelon. Lv H; Yan C PeerJ; 2024; 12():e17587. PubMed ID: 38952963 [TBL] [Abstract][Full Text] [Related]
19. The Improved Biocontrol Agent, F1-35, Protects Watermelon against Fusarium Wilt by Triggering Jasmonic Acid and Ethylene Pathways. Dong XM; Lian QG; Chen J; Jia RM; Zong ZF; Ma Q; Wang Y Microorganisms; 2022 Aug; 10(9):. PubMed ID: 36144312 [TBL] [Abstract][Full Text] [Related]
20. Induced Resistance Mechanism of Bacillus velezensis S3-1 Against Pepper Wilt. Fan Y; He X; Dai J; Yang N; Jiang Q; Xu Z; Tang X; Yu Y; Xiao M Curr Microbiol; 2023 Oct; 80(12):367. PubMed ID: 37819393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]