These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37939173)

  • 1. Deep-learning-assisted Sort-Seq enables high-throughput profiling of gene expression characteristics with high precision.
    Feng H; Li F; Wang T; Xing XH; Zeng AP; Zhang C
    Sci Adv; 2023 Nov; 9(45):eadg5296. PubMed ID: 37939173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sort-Seq Approach to Engineering a Formaldehyde-Inducible Promoter for Dynamically Regulated Escherichia coli Growth on Methanol.
    Rohlhill J; Sandoval NR; Papoutsakis ET
    ACS Synth Biol; 2017 Aug; 6(8):1584-1595. PubMed ID: 28463494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics.
    Potts AH; Vakulskas CA; Pannuri A; Yakhnin H; Babitzke P; Romeo T
    Nat Commun; 2017 Nov; 8(1):1596. PubMed ID: 29150605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reporter system coupled with high-throughput sequencing unveils key bacterial transcription and translation determinants.
    Yus E; Yang JS; Sogues A; Serrano L
    Nat Commun; 2017 Aug; 8(1):368. PubMed ID: 28848232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes?
    Haas BJ; Chin M; Nusbaum C; Birren BW; Livny J
    BMC Genomics; 2012 Dec; 13():734. PubMed ID: 23270466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation.
    Kannaiah S; Livny J; Amster-Choder O
    Mol Cell; 2019 Nov; 76(4):574-589.e7. PubMed ID: 31540875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Cellular RNA Sequencing (HiCAR-Seq): Cost-Effective, High-Throughput 3' mRNA-Seq Method Enabling Individual Sample Quality Control.
    Veeranagouda Y; Zachayus JL; Guillemot JC; Venier O; Didier M
    Curr Protoc Mol Biol; 2020 Sep; 132(1):e123. PubMed ID: 32735043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes.
    Shiroguchi K; Jia TZ; Sims PA; Xie XS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1347-52. PubMed ID: 22232676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the sensitivity of bacterial single-cell RNA sequencing using RamDA-seq and Cas9-based rRNA depletion.
    Nishimura M; Takeyama H; Hosokawa M
    J Biosci Bioeng; 2023 Aug; 136(2):152-158. PubMed ID: 37311684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biases in small RNA deep sequencing data.
    Raabe CA; Tang TH; Brosius J; Rozhdestvensky TS
    Nucleic Acids Res; 2014 Feb; 42(3):1414-26. PubMed ID: 24198247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli.
    Kahramanoglou C; Seshasayee AS; Prieto AI; Ibberson D; Schmidt S; Zimmermann J; Benes V; Fraser GM; Luscombe NM
    Nucleic Acids Res; 2011 Mar; 39(6):2073-91. PubMed ID: 21097887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins.
    Valgepea K; Adamberg K; Seiman A; Vilu R
    Mol Biosyst; 2013 Sep; 9(9):2344-58. PubMed ID: 23824091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleoid-Associated Proteins: Genome Level Occupancy and Expression Analysis.
    Singh P; Seshasayee ASN
    Methods Mol Biol; 2017; 1624():85-97. PubMed ID: 28842878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peregrine: A rapid and unbiased method to produce strand-specific RNA-Seq libraries from small quantities of starting material.
    Langevin SA; Bent ZW; Solberg OD; Curtis DJ; Lane PD; Williams KP; Schoeniger JS; Sinha A; Lane TW; Branda SS
    RNA Biol; 2013 Apr; 10(4):502-15. PubMed ID: 23558773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Quantitative Metagenomic Sequencing Approach for High-Throughput Gene Quantification and Demonstration with Antibiotic Resistance Genes.
    Li B; Li X; Yan T
    Appl Environ Microbiol; 2021 Jul; 87(16):e0087121. PubMed ID: 34085862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothesis-driven approach to predict transcriptional units from gene expression data.
    Steinhauser D; Junker BH; Luedemann A; Selbig J; Kopka J
    Bioinformatics; 2004 Aug; 20(12):1928-39. PubMed ID: 15044239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Targeted Transcriptional Profiling of Defense Genes Using RNA-Mediated Oligonucleotide Annealing, Selection, and Ligation with Next-Generation Sequencing in Arabidopsis.
    Kim SI; Bordiya Y; Nam JC; Mayorga J; Kang HG
    Methods Mol Biol; 2021; 2328():227-252. PubMed ID: 34251630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Profiling of RNA Tumors Using High-Throughput RNA Sequencing: Overview of Library Preparation Methods.
    Courtney SM; da Silveira WA; Hazard ES; Hardiman G
    Methods Mol Biol; 2019; 1908():169-184. PubMed ID: 30649728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput RNA-seq approach to profile transcriptional responses.
    Moyerbrailean GA; Davis GO; Harvey CT; Watza D; Wen X; Pique-Regi R; Luca F
    Sci Rep; 2015 Oct; 5():14976. PubMed ID: 26510397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-length RNA profiling reveals pervasive bidirectional transcription terminators in bacteria.
    Ju X; Li D; Liu S
    Nat Microbiol; 2019 Nov; 4(11):1907-1918. PubMed ID: 31308523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.