These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37939415)

  • 1. 3D superstructure based metabolite profiling for glaucoma diagnosis.
    Jang M; Shin J; Kim YH; Jeong TY; Jo S; Kim SJ; Devaraj V; Kang J; Choi EJ; Lee JE; Oh JW
    Biosens Bioelectron; 2024 Jan; 244():115780. PubMed ID: 37939415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis.
    Braeu FA; Thiéry AH; Tun TA; Kadziauskiene A; Barbastathis G; Aung T; Girard MJA
    Am J Ophthalmol; 2023 Jun; 250():38-48. PubMed ID: 36646242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks.
    Wang P; Yuan M; He Y; Sun J
    Int Ophthalmol; 2021 Jun; 41(6):2065-2072. PubMed ID: 33655390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A residual connection enabled deep neural network model for optic disk and optic cup segmentation for glaucoma diagnosis.
    Aurangzeb K
    Sci Prog; 2023; 106(3):368504231201329. PubMed ID: 37743660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Aiming for zero blindness].
    Nakazawa T
    Nippon Ganka Gakkai Zasshi; 2015 Mar; 119(3):168-93; discussion 194. PubMed ID: 25854109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images.
    George Y; Antony BJ; Ishikawa H; Wollstein G; Schuman JS; Garnavi R
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3421-3430. PubMed ID: 32750930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma.
    Thiéry AH; Braeu F; Tun TA; Aung T; Girard MJA
    Transl Vis Sci Technol; 2023 Feb; 12(2):23. PubMed ID: 36790820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Ordered Single Crystalline Nanowire Array Assembled Three-Dimensional Nb3O7(OH) and Nb2O5 Superstructures for Energy Storage and Conversion Applications.
    Zhang H; Wang Y; Liu P; Chou SL; Wang JZ; Liu H; Wang G; Zhao H
    ACS Nano; 2016 Jan; 10(1):507-14. PubMed ID: 26579783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feature agnostic approach for glaucoma detection in OCT volumes.
    Maetschke S; Antony B; Ishikawa H; Wollstein G; Schuman J; Garnavi R
    PLoS One; 2019; 14(7):e0219126. PubMed ID: 31260494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Optical Coherence Tomography Imaging For Glaucoma Associated With Boston Keratoprosthesis Type I and II.
    Khoueir Z; Jassim F; Braaf B; Poon LY; Tsikata E; Chodosh J; Dohlman CH; Vakoc BJ; Bouma BE; de Boer JF; Chen TC
    J Glaucoma; 2019 Aug; 28(8):718-726. PubMed ID: 31169563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Polycrystalline Ice for Assembly of Large Area Au Nanoparticle Superstructures as SERS Substrates.
    Bekana D; Liu R; Amde M; Liu JF
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):513-520. PubMed ID: 27984854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of automated perimetry for glaucoma by neural network.
    Goldbaum MH; Sample PA; White H; Côlt B; Raphaelian P; Fechtner RD; Weinreb RN
    Invest Ophthalmol Vis Sci; 1994 Aug; 35(9):3362-73. PubMed ID: 8056511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three-dimensional structural configuration of the central retinal vessel trunk and branches as a glaucoma biomarker.
    Panda SK; Cheong H; Tun TA; Chuangsuwanich T; Kadziauskiene A; Senthil V; Krishnadas R; Buist ML; Perera S; Cheng CY; Aung T; Thiery AH; Girard MJA
    Am J Ophthalmol; 2022 Aug; 240():205-216. PubMed ID: 35247336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography.
    Sun S; Ha A; Kim YK; Yoo BW; Kim HC; Park KH
    Br J Ophthalmol; 2021 Nov; 105(11):1555-1560. PubMed ID: 32920530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive Sandwich-Type SERS-Biosensor-Based Dual Plasmonic Superstructure for Detection of Tacrolimus in Patients.
    Zheng X; Ye J; Chen W; Wang X; Li J; Su F; Ding C; Huang Y
    ACS Sens; 2022 Oct; 7(10):3126-3134. PubMed ID: 36206537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic nanoparticle assemblies.
    Wang L; Xu L; Kuang H; Xu C; Kotov NA
    Acc Chem Res; 2012 Nov; 45(11):1916-26. PubMed ID: 22449243
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.