BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37939421)

  • 1. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG.
    Ma C; Xie Y; Huang X; Zhang L; Julian McClements D; Zou L; Liu W
    Food Chem; 2024 Mar; 437(Pt 2):137913. PubMed ID: 37939421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries.
    Xu X; Dai Z; Zhang Z; Kou X; You X; Sun H; Guo H; Liu M; Zhu H
    Eur J Pharmacol; 2021 Apr; 897():173951. PubMed ID: 33607105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of epigallocatechin-3-gallate (EGCG) using oil-in-water (O/W) submicrometer emulsions stabilized by ι-carrageenan and β-lactoglobulin.
    Ru Q; Yu H; Huang Q
    J Agric Food Chem; 2010 Oct; 58(19):10373-81. PubMed ID: 20843038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of theacrine on the astringency of EGCG by affecting salivary protein - EGCG interactions through different molecular mechanisms.
    Xie J; Shi Y; Luo W; Fang W; Luo L; Zeng L
    Food Chem X; 2024 Jun; 22():101474. PubMed ID: 38817981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predictive model for astringency based on in vitro interactions between salivary proteins and (-)-Epigallocatechin gallate.
    Ye QQ; Chen GS; Pan W; Cao QQ; Zeng L; Yin JF; Xu YQ
    Food Chem; 2021 Mar; 340():127845. PubMed ID: 32889218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39.
    Narukawa M; Noga C; Ueno Y; Sato T; Misaka T; Watanabe T
    Biochem Biophys Res Commun; 2011 Feb; 405(4):620-5. PubMed ID: 21272567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analyses of the bitterness and astringency of catechins from green tea.
    Xu YQ; Zhang YN; Chen JX; Wang F; Du QZ; Yin JF
    Food Chem; 2018 Aug; 258():16-24. PubMed ID: 29655718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated exposure to epigallocatechin gallate solution or water alters bitterness intensity and salivary protein profile.
    Davis LA; Running CA
    Physiol Behav; 2021 Dec; 242():113624. PubMed ID: 34655570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the relationship between taste sensor response and the amount of epigallocatechin gallate adsorbed onto a lipid-polymer membrane.
    Harada Y; Tahara Y; Toko K
    Sensors (Basel); 2015 Mar; 15(3):6241-9. PubMed ID: 25781512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of adsorption behavior of (-)-epigallocatechin gallate on bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring.
    Wang X; Ho CT; Huang Q
    J Agric Food Chem; 2007 Jun; 55(13):4987-92. PubMed ID: 17536833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the bitter-masking potential of food proteins for EGCG by a cell-based human bitter taste receptor assay and binding studies.
    Bohin MC; Roland WS; Gruppen H; Gouka RJ; van der Hijden HT; Dekker P; Smit G; Vincken JP
    J Agric Food Chem; 2013 Oct; 61(42):10010-7. PubMed ID: 24093533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of unsaturated alkanoic acid amides as maskers of epigallocatechin gallate astringency.
    Obst K; Paetz S; Backes M; Reichelt KV; Ley JP; Engel KH
    J Agric Food Chem; 2013 May; 61(18):4242-9. PubMed ID: 23582039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3-
    Saeki K; Hayakawa S; Nakano S; Ito S; Oishi Y; Suzuki Y; Isemura M
    Molecules; 2018 May; 23(6):. PubMed ID: 29843451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate.
    Granja A; Vieira AC; Chaves LL; Nunes C; Neves AR; Pinheiro M; Reis S
    Food Chem; 2017 Dec; 237():803-810. PubMed ID: 28764070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phenolic acids and quercetin-3-O-rutinoside on the bitterness and astringency of green tea infusion.
    Chen YH; Zhang YH; Chen GS; Yin JF; Chen JX; Wang F; Xu YQ
    NPJ Sci Food; 2022 Jan; 6(1):8. PubMed ID: 35087059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases.
    Wu D; Wang J; Pae M; Meydani SN
    Mol Aspects Med; 2012 Feb; 33(1):107-18. PubMed ID: 22020144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage.
    Xu YQ; Gao Y; Granato D
    Food Chem; 2021 Mar; 339():128060. PubMed ID: 32950901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of theasinensins and epigallocatechin-3-O-gallate on phospholipid bilayer structure and liposomal aggregation.
    Narai-Kanayama A; Hayakawa S; Yoshino T; Honda F; Matsuda H; Oishi Y
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184312. PubMed ID: 38579959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From tea to treatment; epigallocatechin gallate and its potential involvement in minimizing the metabolic changes in cancer.
    Tauber AL; Schweiker SS; Levonis SM
    Nutr Res; 2020 Feb; 74():23-36. PubMed ID: 31918176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing Whey Protein Isolate, Bacterial Cellulose and salt.
    Evageliou V; Panagopoulou E; Mandala I
    Food Chem; 2019 May; 281():171-177. PubMed ID: 30658744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.