These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 37939766)
1. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Zhou Z; Wang H; Li J; Jiang X; Li Z; Shen J Int J Biol Macromol; 2024 Jan; 254(Pt 2):127911. PubMed ID: 37939766 [TBL] [Abstract][Full Text] [Related]
2. Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Li JH; Huang LJ; Zhou HL; Shan YM; Chen FM; Lehto VP; Xu WJ; Luo LQ; Yu HJ Acta Pharmacol Sin; 2022 Nov; 43(11):2749-2758. PubMed ID: 35484402 [TBL] [Abstract][Full Text] [Related]
3. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Mahoney KM; Freeman GJ; McDermott DF Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918 [TBL] [Abstract][Full Text] [Related]
4. Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches. Won JE; Byeon Y; Wi TI; Lee CM; Lee JH; Kang TH; Lee JW; Lee Y; Park YM; Han HD J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35228265 [TBL] [Abstract][Full Text] [Related]
5. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy. Wei S; Shao X; Liu Y; Xiong B; Cui P; Liu Z; Li Q J Mater Chem B; 2022 Feb; 10(8):1291-1300. PubMed ID: 35141737 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in nanotechnology for programmed death ligand 1-targeted cancer theranostics. Gao X; Cao K; Yang J; Liu L; Gao L J Mater Chem B; 2024 Mar; 12(13):3191-3208. PubMed ID: 38497358 [TBL] [Abstract][Full Text] [Related]
7. Programmable Unlocking Nano-Matryoshka-CRISPR Precisely Reverses Immunosuppression to Unleash Cascade Amplified Adaptive Immune Response. Yang J; Li Z; Shen M; Wang Y; Wang L; Li J; Yang W; Li J; Li H; Wang X; Wu Q; Gong C Adv Sci (Weinh); 2021 Jul; 8(13):2100292. PubMed ID: 34258164 [TBL] [Abstract][Full Text] [Related]
8. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262 [TBL] [Abstract][Full Text] [Related]
9. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Wang Z; Wu X Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727 [TBL] [Abstract][Full Text] [Related]
10. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Wu Y; Chen W; Xu ZP; Gu W Front Immunol; 2019; 10():2022. PubMed ID: 31507611 [TBL] [Abstract][Full Text] [Related]
11. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Xu Y; Chen C; Guo Y; Hu S; Sun Z Front Immunol; 2022; 13():848327. PubMed ID: 35300341 [TBL] [Abstract][Full Text] [Related]
12. Strategies targeting PD-L1 expression and associated opportunities for cancer combination therapy. Yin S; Chen Z; Chen D; Yan D Theranostics; 2023; 13(5):1520-1544. PubMed ID: 37056572 [TBL] [Abstract][Full Text] [Related]
13. PD-1/PD-L1 and DNA Damage Response in Cancer. Kciuk M; Kołat D; Kałuzińska-Kołat Ż; Gawrysiak M; Drozda R; Celik I; Kontek R Cells; 2023 Feb; 12(4):. PubMed ID: 36831197 [TBL] [Abstract][Full Text] [Related]
14. Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death. Moon Y; Shim MK; Choi J; Yang S; Kim J; Yun WS; Cho H; Park JY; Kim Y; Seong JK; Kim K Theranostics; 2022; 12(5):1999-2014. PubMed ID: 35265195 [No Abstract] [Full Text] [Related]
15. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Yu X; Zhai X; Wu J; Feng Q; Hu C; Zhu L; Zhou Q Biochim Biophys Acta Mol Basis Dis; 2024 Jan; 1870(1):166881. PubMed ID: 37696462 [TBL] [Abstract][Full Text] [Related]
16. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy. Liu J; Li G; Guo H; Ni C; Gao Y; Cao X; Xia J; Shi X; Guo R ACS Appl Mater Interfaces; 2023 Mar; 15(10):12809-12821. PubMed ID: 36853989 [TBL] [Abstract][Full Text] [Related]
17. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy. Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671 [TBL] [Abstract][Full Text] [Related]
18. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way. Yu X; Long Y; Chen B; Tong Y; Shan M; Jia X; Hu C; Liu M; Zhou J; Tang F; Lu H; Chen R; Xu P; Huang W; Ren J; Wan Y; Sun J; Li J; Jin G; Gong L J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36253000 [TBL] [Abstract][Full Text] [Related]
19. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. Lin X; Li F; Guan J; Wang X; Yao C; Zeng Y; Liu X ACS Nano; 2023 Aug; 17(15):14494-14507. PubMed ID: 37485850 [TBL] [Abstract][Full Text] [Related]
20. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Han X; Li H; Zhou D; Chen Z; Gu Z Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]