These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37939801)
1. Conversion of seaweed waste to biochar for the removal of heavy metal ions from aqueous solution: A sustainable method to address eutrophication problem in water bodies. Ravindiran G; Rajamanickam S; Ramalingam M; Hayder G; Sathaiah BK; Gaddam MKR; Muniasamy SK; Arunkumar P Environ Res; 2024 Jan; 241():117551. PubMed ID: 37939801 [TBL] [Abstract][Full Text] [Related]
2. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
3. Continuous fixed-bed column study and adsorption modeling removal of Ni Banza M; Rutto H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(2):117-129. PubMed ID: 35137674 [TBL] [Abstract][Full Text] [Related]
4. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Vijayaraghavan K; Jegan J; Palanivelu K; Velan M Chemosphere; 2005 Jul; 60(3):419-26. PubMed ID: 15924962 [TBL] [Abstract][Full Text] [Related]
5. Mathematical modelling of Pb Igberase E; Osifo P; Ofomaja A Environ Technol; 2018 Dec; 39(24):3203-3220. PubMed ID: 28866961 [TBL] [Abstract][Full Text] [Related]
6. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Bouhamed F; Elouear Z; Bouzid J; Ouddane B Environ Sci Pollut Res Int; 2016 Aug; 23(16):15801-6. PubMed ID: 25843824 [TBL] [Abstract][Full Text] [Related]
7. Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent. Maity S; Bajirao Patil P; SenSharma S; Sarkar A Chemosphere; 2022 Nov; 307(Pt 4):136115. PubMed ID: 35995185 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of trace heavy metals through organic compounds enriched biochar using isotherm adsorption and kinetic models. Dad FP; Khan WU; Sharif F; Nizami AS Environ Res; 2024 Jan; 241():117702. PubMed ID: 37980985 [TBL] [Abstract][Full Text] [Related]
9. Effect of ternary polymer composites of macroporous adsorbents on adsorption properties for heavy metal removal from aqueous solution. Charoenchai M; Tangbunsuk S Environ Sci Pollut Res Int; 2022 Nov; 29(55):84006-84018. PubMed ID: 35776300 [TBL] [Abstract][Full Text] [Related]
10. Green and low-temperature synthesis of the magnetic modified biochar under the air atmosphere for the adsorptive removal of heavy metal ions from wastewater: CCD-RSM experimental design with isotherm, kinetic, and thermodynamic studies. Arabkhani P; Asfaram A; Sadegh F Environ Sci Pollut Res Int; 2023 Dec; 30(57):120085-120102. PubMed ID: 37936036 [TBL] [Abstract][Full Text] [Related]
11. Biochar admixture cement mortar fines for adsorptive removal of heavy metals in single and multimetal solution: Insights into the sorption mechanisms and environmental significance. Praneeth S; Zameer A; Zhang N; Dubey BK; Sarmah AK Sci Total Environ; 2022 Sep; 839():155992. PubMed ID: 35623514 [TBL] [Abstract][Full Text] [Related]
12. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. Gayathri R; Gopinath KP; Kumar PS Chemosphere; 2021 Jan; 262():128031. PubMed ID: 33182077 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis and characterization of polypyrrole - iron oxide - seaweed (PPy-Fe Sarojini G; Venkateshbabu S; Rajasimman M Chemosphere; 2021 Sep; 278():130400. PubMed ID: 33819882 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of arsenic removal using brown seaweed derived impregnated with iron oxide biochar for batch and column studies. Devrajani SK; Ahmed Z; Qambrani NA; Kanwal S; Sundaram UM; Mubarak NM Sci Rep; 2024 Aug; 14(1):18102. PubMed ID: 39103501 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Son EB; Poo KM; Chang JS; Chae KJ Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991 [TBL] [Abstract][Full Text] [Related]
16. Remediation of Pb (II), Cd (II), and Zn (II) from aqueous solutions using porous (styrene-divinylbenzene)/Cu-Ni bimetallic nanocomposite microspheres: continuous fixed-bed column study. Thrikkykkal H; Antu R; P S H Water Sci Technol; 2023 May; 87(9):2277-2291. PubMed ID: 37186630 [TBL] [Abstract][Full Text] [Related]
17. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. El-Gendy MMAA; Abdel-Moniem SM; Ammar NS; El-Bondkly AMA Biometals; 2023 Dec; 36(6):1307-1329. PubMed ID: 37428423 [TBL] [Abstract][Full Text] [Related]
18. Silanized fiberglass modified by carbon dots as novel and impressive adsorbent for aqueous heavy metal ion removal. Shahrezaei F; Gholivand MB; Shamsipur M; Moradi G; Babajani N; Barati A Environ Sci Pollut Res Int; 2023 Jul; 30(34):82297-82310. PubMed ID: 37326740 [TBL] [Abstract][Full Text] [Related]
19. Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column. Sharma R; Singh B Bioresour Technol; 2013 Oct; 146():519-524. PubMed ID: 23973969 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa. R L; Rejiniemon TS; Sathya R; Kuppusamy P; Al-Mekhlafi FA; Wadaan MA; Rajendran P Chemosphere; 2022 Nov; 306():135479. PubMed ID: 35753418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]