These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37939998)

  • 1. A yeast cell cycle pulse generator model shows consistency with multiple oscillatory and checkpoint mutant datasets.
    Fox J; Cummins B; Moseley RC; Gameiro M; Haase SB
    Math Biosci; 2024 Jan; 367():109102. PubMed ID: 37939998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boolean factor graph model for biological systems: the yeast cell-cycle network.
    Kotiang S; Eslami A
    BMC Bioinformatics; 2021 Sep; 22(1):442. PubMed ID: 34535069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY; Huang CW; Kao KC; Lai PY
    Gene; 2013 Apr; 518(1):35-41. PubMed ID: 23274654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boolean network model predicts knockout mutant phenotypes of fission yeast.
    Davidich MI; Bornholdt S
    PLoS One; 2013; 8(9):e71786. PubMed ID: 24069138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells.
    Song R; Peng W; Liu P; Acar M
    BMC Syst Biol; 2015 Dec; 9():91. PubMed ID: 26646617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A checkpoints capturing timing-robust Boolean model of the budding yeast cell cycle regulatory network.
    Hong C; Lee M; Kim D; Kim D; Cho KH; Shin I
    BMC Syst Biol; 2012 Sep; 6():129. PubMed ID: 23017186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boolean network models of cellular regulation: prospects and limitations.
    Bornholdt S
    J R Soc Interface; 2008 Aug; 5 Suppl 1(Suppl 1):S85-94. PubMed ID: 18508746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.
    Mcclenny LD; Imani M; Braga-Neto UM
    BMC Bioinformatics; 2017 Nov; 18(1):519. PubMed ID: 29178844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive functions in boolean models of gene regulatory network modules.
    Darabos C; Di Cunto F; Tomassini M; Moore JH; Provero P; Giacobini M
    PLoS One; 2011; 6(11):e25110. PubMed ID: 22132067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae.
    Haliki E; Alpagut Keskin N; Masalci O
    J Biol Phys; 2019 Sep; 45(3):235-251. PubMed ID: 31175490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling gene and protein regulatory networks with answer set programming.
    Fayruzov T; Janssen J; Vermeir D; Cornelis C; De Cock M
    Int J Data Min Bioinform; 2011; 5(2):209-29. PubMed ID: 21544955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae.
    Kelliher CM; Foster MW; Motta FC; Deckard A; Soderblom EJ; Moseley MA; Haase SB
    Mol Biol Cell; 2018 Nov; 29(22):2644-2655. PubMed ID: 30207828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-parameter exploration of dynamics of regulatory networks.
    Gedeon T
    Biosystems; 2020 Apr; 190():104113. PubMed ID: 32057819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boolean network model predicts cell cycle sequence of fission yeast.
    Davidich MI; Bornholdt S
    PLoS One; 2008 Feb; 3(2):e1672. PubMed ID: 18301750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Modeling of Cellular Proliferation: Toward a Multi-scale Framework Coupling Cell Cycle to Metabolism by Integrating Logical and Constraint-Based Models.
    van der Zee L; Barberis M
    Methods Mol Biol; 2019; 2049():365-385. PubMed ID: 31602622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconciling conflicting models for global control of cell-cycle transcription.
    Cho CY; Motta FC; Kelliher CM; Deckard A; Haase SB
    Cell Cycle; 2017 Oct; 16(20):1965-1978. PubMed ID: 28934013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants.
    Gallegos JE; Adames NR; Rogers MF; Kraikivski P; Ibele A; Nurzynski-Loth K; Kudlow E; Murali TM; Tyson JJ; Peccoud J
    NPJ Syst Biol Appl; 2020 May; 6(1):11. PubMed ID: 32376972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.